Consistency of M-Theory on Non-Orientable Manifolds

We prove that there is no parity anomaly in M-theory in the low-energy field theory approximation. Our approach is computational. We determine the generators for the 12-dimensional bordism group of pin manifolds with a w1-twisted integer lift of w4; these are the manifolds on which Wick-rotated M-theory exists. The anomaly cancellation comes down to computing a specific η-invariant and cubic form on these manifolds. Of interest beyond this specific problem are our expositions of computational techniques for η-invariants, the algebraic theory of cubic forms, Adams spectral sequence techniques and anomalies for spinor fields and Rarita–Schwinger fields.

[1]  H. Donnelly Spectrum and the fixed point sets of isometries. I , 1976 .

[2]  R. Stong Determination of *((,\cdots,∞),₂) and *((,\cdots,∞),₂) , 1963 .

[3]  E. W. Morris No , 1923, The Hospital and health review.

[4]  J. Milnor,et al.  BERNOULLI NUMBERS, HOMOTOPY GROUPS, A N D A THEOREM OF ROHLIN , 2010 .

[5]  W. Browder The Kervaire invariant of framed manifolds and its generalization , 1969 .

[6]  M. Atiyah,et al.  The Index of elliptic operators. 3. , 1968 .

[7]  D. Quillen Determinants of Cauchy-Riemann operators over a Riemann surface , 1985 .

[8]  W. J. Fisher,et al.  Translated from the French , 1920 .

[9]  T. Berger,et al.  Manifolds and modular forms , 1992 .

[10]  E. Brown,et al.  SU-corbodism, KO-characteristic Numbers, and the Kervaire Invariant , 1966 .

[11]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian geometry. II , 1975, Mathematical Proceedings of the Cambridge Philosophical Society.

[12]  Michael Comenetz,et al.  Pontrjagin Duality for Generalized Homology and Cohomology Theories , 1976 .

[13]  G. Nishida,et al.  Cohomology operations in iterated loop spaces , 1968 .

[14]  J. Milnor,et al.  Groups of Homotopy Spheres, I , 2015 .

[15]  J. Bismut,et al.  Real embeddings and eta invariants , 1993 .

[16]  D. Freed Anomalies and Invertible Field Theories , 2014, 1404.7224.

[17]  D. Freed,et al.  Consistent Orientation of Moduli Spaces , 2007, 0711.1909.

[18]  E. Witten The "parity" anomaly on an unorientable manifold , 2016, 1605.02391.

[19]  Dominic Joyce,et al.  Compact Manifolds with Special Holonomy , 2000 .

[20]  Weiping Zhang A mod 2 index theorem for pin− manifolds , 2015, 1508.02619.

[21]  Jay A. Wood,et al.  Integral invariants and cohomology of B Spin(n) , 1995 .

[22]  P. Gilkey The eta invariant for even dimensional PINc manifolds , 1985 .

[23]  I. M. Singer,et al.  Quadratic functions in geometry, topology, and M-theory , 2002, math/0211216.

[24]  η‐invariants and determinant lines , 1994, hep-th/9405012.

[25]  A. Kozłowski Transfers in the Group of Multiplicative Units of the Classical Cohomology Ring and Stiefel-Whitney Classes , 1989 .

[26]  Edgar H. Brown,et al.  Generalizations of the Kervaire Invariant , 1972 .

[27]  A. Borel,et al.  CHARACTERISTIC CLASSES AND HOMOGENEOUS SPACES, I.* , 1958 .

[28]  E. Cremmer,et al.  Supergravity in theory in 11 dimensions , 1978 .

[29]  Robert T. Seeley,et al.  Complex powers of an elliptic operator , 1967 .

[30]  Spectral asymmetry and Riemannian geometry I , 1975 .

[31]  V. K. Patodi,et al.  Spectrum and the fixed point sets of isometries—II , 1977 .

[32]  G. Segal The Definition of Conformal Field Theory , 1988 .

[33]  Jean-Pierre Serre A Course in Arithmetic , 1973 .

[34]  On flux quantization in M-theory and the effective action , 1996, hep-th/9609122.

[35]  E. Witten Fermion Path Integrals And Topological Phases , 2015, 1508.04715.

[36]  K-Theory in Quantum Field Theory , 2002, math-ph/0206031.

[37]  D. Freed Lectures on Field Theory and Topology , 2019, CBMS Regional Conference Series in Mathematics.

[38]  E. Dyer,et al.  Homology of Iterated Loop Spaces , 1962 .

[39]  R. C. Kirbyl,et al.  Pin Structures on Low-dimensional Manifolds by , 2008 .

[40]  M. Duff,et al.  Eleven-dimensional origin of string-string duality: A One loop test , 1995, hep-th/9506126.

[41]  V. K. Patodi,et al.  Spectral asymmetry and Riemannian Geometry. I , 1973, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  D. Freed,et al.  Setting the Quantum Integrand of M-Theory , 2004, hep-th/0409135.

[43]  Sakinah,et al.  Vol. , 2020, New Medit.

[44]  R. Kirby,et al.  A calculation ofPin+ bordism groups , 1990 .

[45]  V. Volpert Index of Elliptic Operators , 2011 .

[46]  S. Donaldson,et al.  Pin structures on low-dimensional manifolds , 1991 .

[47]  E. Brown,et al.  The structure of the Spin cobordism ring , 1967 .

[48]  S. Stolz Exotic structures on 4-manifolds detected by spectral invariants , 1988 .