Optimal control of time-varying singular systems using the RK–Butcher algorithm
暂无分享,去创建一个
[1] L. Shampine,et al. Numerical Solution of Ordinary Differential Equations. , 1995 .
[2] J. Butcher. The numerical analysis of ordinary differential equations: Runge-Kutta and general linear methods , 1987 .
[3] R. Schilling,et al. A note on optimal control of generalized state-space (descriptor) systems , 1986 .
[4] R. Alexander,et al. Runge-Kutta methods and differential-algebraic systems , 1990 .
[5] K. Murugesan,et al. Numerical solution of an industrial robot arm control problem using the RK-Butcher algorithm , 2004, Int. J. Comput. Appl. Technol..
[6] D. Cobb,et al. Descriptor variable systems and optimal state regulation , 1983 .
[7] J. Butcher. Numerical Methods for Ordinary Differential Equations: Butcher/Numerical Methods , 2005 .
[8] Yen-Ping Shih,et al. Analysis and optimal control of time-varying linear systems via Walsh functions , 1978 .
[9] L. Shampine,et al. Computer solution of ordinary differential equations : the initial value problem , 1975 .
[10] David J. Evans,et al. New runge kutta starters for multistep methodsStarters for multistep methods , 1999, Int. J. Comput. Math..
[11] C. F. Chen,et al. Walsh series analysis in optimal control , 1975 .
[12] Morris Bader. A new technique for the early detection of stiffness in coupled differential equations and application to standard Runge-Kutta algorithms , 1998 .
[13] L. Pandolfi. On the regulator problem for linear degenerate control systems , 1981 .
[14] K. Balachandran,et al. Optimal control of singular systems via single-term walsh series , 1992, Int. J. Comput. Math..
[15] J. Butcher. Numerical methods for ordinary differential equations , 2003 .
[16] David J. Evans,et al. Optimal control of singular systems using the rk–butcher algorithm , 2004, Int. J. Comput. Math..
[17] David J. Evans,et al. A fourth order Runge-Kutta RK(4, 4) method with error control , 1999, Int. J. Comput. Math..
[18] K. R. Palanisamy,et al. Analysis and optimal control of linear systems via single term Walsh series approach , 1981 .
[19] Morris Bader. A comparative study of new truncation error estimates and intrinsic accuracies of some higher order Runge-Kutta algorithms , 1987, Comput. Chem..
[20] R. Mukundan,et al. On the design of observers for generalized state space systems using singular value decomposition , 1983 .