PRELUDE TO THE CAMBRIAN EXPLOSION

▪ Abstract The Prelude began with the origin of Metazoa, perhaps between 720 and 660 million years ago (mya), and ended with the geologically abrupt appearance of crown bilaterian phyla that began between 530 and 520 mya. The origin and early evolution of phyla cannot be tracked by fossils during this interval, but molecular phylogenetics permits reconstruction of their branching topology, whereas molecular developmental evidence supports hypotheses for the evolution of the metzoan genome during the rise of complex bodyplans. A flexible architecture of genetic regulation was in place even before the appearance of crown sponges, permitting increases in gene expression events as bodyplan complexity rose. Neoproterozoic bilaterians were chiefly small-bodied but likely diverse, whereas in the earliest Cambrian, between 543 and approximately 530–520 mya, bodies that were complex by marine invertebrate standards evolved in association with body-size increases.

[1]  A. Knoll,et al.  Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  S. Morris Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review , 1992 .

[3]  J. W. Valentine,et al.  Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers , 2000, Paleobiology.

[4]  W. B. Harland,et al.  A Geologic Time Scale 1989 , 1990 .

[5]  A. Seilacher Vendozoa: Organismic construction in the Proterozoic biosphere , 1989 .

[6]  J. W. Valentine Two genomic paths to the evolution of complexity in bodyplans , 2000, Paleobiology.

[7]  A. Collins,et al.  Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[8]  R. Riding,et al.  The ecology of the Cambrian radiation , 2000 .

[9]  J. W. Valentine,et al.  Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.

[10]  M. Fedonkin,et al.  The Vendian as the Terminal System of the Precambrian , 1984 .

[11]  R. Riding,et al.  2. Paleomagnetically and Tectonically Based Global Maps for Vendian to Mid-Ordovician Time , 2000 .

[12]  S. Jensen,et al.  When the worm turned: Concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia , 1999 .

[13]  M. Wills,et al.  The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity , 1996 .

[14]  Diying Huang,et al.  An early Cambrian craniate-like chordate , 1999, Nature.

[15]  J. Gehling,et al.  The Ediacara member of the Rawnsley quartzite: The context of the Ediacara assemblage (late precambrian, flinders ranges) , 1983 .

[16]  J. W. Valentine,et al.  Morphological complexity increase in metazoans , 1994, Paleobiology.

[17]  W. Bruno,et al.  Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.

[18]  S. Morris,et al.  Early Radiation of Biomineralizing Phyla , 1992 .

[19]  M. Fedonkin,et al.  The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.

[20]  A. Knoll,et al.  Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.

[21]  M. Brasier,et al.  Did Supercontinental Amalgamation Trigger the “Cambrian Explosion”? , 2003 .

[22]  R. DeSalle,et al.  Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. , 1995, Molecular biology and evolution.

[23]  Chen,et al.  Precambrian sponges with cellular structures , 1998, Science.

[24]  J. W. Valentine Dickinsonia as a polypoid organism , 1992, Paleobiology.

[25]  W. Müller Origin of Metazoa: Sponges as Living Fossils , 1998, Naturwissenschaften.

[26]  J. W. Valentine How were vendobiont bodies patterned? , 2001, Paleobiology.

[27]  K. Towe Oxygen-collagen priority and the early metazoan fossil record. , 1970, Proceedings of the National Academy of Sciences of the United States of America.

[28]  M. Brasier The dawn of animal life , 1987 .

[29]  J. Hayes,et al.  Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.

[30]  Halverson,et al.  A neoproterozoic snowball earth , 1998, Science.

[31]  L. Ramsköld,et al.  Composition and preservation of the Chengjiang fauna –a Lower Cambrian soft‐bodied biota , 1991 .

[32]  A. Knoll Breathing room for early animals , 1996, Nature.

[33]  W. B. Harland,et al.  A Geologic time scale , 1982 .

[34]  J. W. Valentine,et al.  The significance of moulting in Ecdysozoan evolution , 2000, Evolution & development.

[35]  Michael J. Sanderson,et al.  A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .

[36]  J. William Schopf,et al.  The Proterozoic biosphere : a multidisciplinary study , 1992 .

[37]  N. Butterfield Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.

[38]  S. Morris,et al.  A Burgess shale-like fauna from the Lower Cambrian of North Greenland , 1987, Nature.

[39]  A. Zhuravlev,et al.  The Lower Cambrian Fossil Record of the Soviet Union , 1992 .

[40]  B. Galliot,et al.  Origin of anterior patterning. How old is our head? , 2000, Trends in genetics : TIG.

[41]  E. Davidson,et al.  Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[42]  B. Schierwater,et al.  Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[43]  J. Finnerty,et al.  Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria , 1999, Evolution & development.

[44]  A. Seilacher Vendobionta and Psammocorallia: lost constructions of Precambrian evolution , 1992, Journal of the Geological Society.

[45]  S. Gould The Shape of Life , 1996 .

[46]  J. W. Valentine,et al.  Developmental evolution of metazoan bodyplans: the fossil evidence. , 1996, Developmental biology.

[47]  S. Bowring,et al.  Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana , 1998 .

[48]  Donald E. Canfield,et al.  Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.

[49]  A. J. Kaufman,et al.  Biostratigraphic and Geochronologic Constraints on Early Animal Evolution , 1995, Science.

[50]  S. Carroll,et al.  Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.

[51]  S. Stanley An ecological theory for the sudden origin of multicellular life in the late precambrian. , 1973, Proceedings of the National Academy of Sciences of the United States of America.

[52]  K. Fauchald Polychaete Phylogeny: A Problem in Protostome Evolution , 1974 .

[53]  Douglas H. Erwin,et al.  The Origin of Animal Body Plans , 1997 .

[54]  James W. Valentine,et al.  WHY NO NEW PHYLA AFTER THE CAMBRIAN? GENOME AND ECOSPACE HYPOTHESES REVISITED , 1995 .

[55]  M. Lynch,et al.  The evolutionary fate and consequences of duplicate genes. , 2000, Science.

[56]  G. Vidal,et al.  Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton , 1997, Paleobiology.

[57]  F. Ayala,et al.  Vagaries of the molecular clock. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[58]  S. Matthews,et al.  Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work , 1975, Journal of the Geological Society.

[59]  G. Shields,et al.  Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia , 1996, Geological Magazine.

[60]  S. Morris,et al.  Lower Cambrian vertebrates from south China , 1999, Nature.

[61]  K. Kuma,et al.  Multiple Protein Tyrosine Phosphatases in Sponges and Explosive Gene Duplication in the Early Evolution of Animals Before the Parazoan–Eumetazoan Split , 1999, Journal of Molecular Evolution.

[62]  Michael D. Hendy,et al.  The Power of Relative Rates Tests Depends on the Data , 2000, Journal of Molecular Evolution.

[63]  M. Manuel,et al.  Homeobox gene diversification in the calcareous sponge, Sycon raphanus. , 2000, Molecular phylogenetics and evolution.

[64]  J. Lipps,et al.  The Origin and Early Evolution of Metazoa , 1992 .