PRELUDE TO THE CAMBRIAN EXPLOSION
暂无分享,去创建一个
[1] A. Knoll,et al. Eumetazoan fossils in terminal proterozoic phosphorites? , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[2] S. Morris. Burgess Shale-type faunas in the context of the ‘Cambrian explosion’: a review , 1992 .
[3] J. W. Valentine,et al. Modern mucociliary creeping trails and the bodyplans of Neoproterozoic trace-makers , 2000, Paleobiology.
[4] W. B. Harland,et al. A Geologic Time Scale 1989 , 1990 .
[5] A. Seilacher. Vendozoa: Organismic construction in the Proterozoic biosphere , 1989 .
[6] J. W. Valentine. Two genomic paths to the evolution of complexity in bodyplans , 2000, Paleobiology.
[7] A. Collins,et al. Evaluating multiple alternative hypotheses for the origin of Bilateria: an analysis of 18S rRNA molecular evidence. , 1998, Proceedings of the National Academy of Sciences of the United States of America.
[8] R. Riding,et al. The ecology of the Cambrian radiation , 2000 .
[9] J. W. Valentine,et al. Fossils, molecules and embryos: new perspectives on the Cambrian explosion. , 1999, Development.
[10] M. Fedonkin,et al. The Vendian as the Terminal System of the Precambrian , 1984 .
[11] R. Riding,et al. 2. Paleomagnetically and Tectonically Based Global Maps for Vendian to Mid-Ordovician Time , 2000 .
[12] S. Jensen,et al. When the worm turned: Concordance of Early Cambrian ichnofabric and trace-fossil record in siliciclastic rocks of South Australia , 1999 .
[13] M. Wills,et al. The Cambrian evolutionary ‘explosion’: decoupling cladogenesis from morphological disparity , 1996 .
[14] Diying Huang,et al. An early Cambrian craniate-like chordate , 1999, Nature.
[15] J. Gehling,et al. The Ediacara member of the Rawnsley quartzite: The context of the Ediacara assemblage (late precambrian, flinders ranges) , 1983 .
[16] J. W. Valentine,et al. Morphological complexity increase in metazoans , 1994, Paleobiology.
[17] W. Bruno,et al. Performance of a divergence time estimation method under a probabilistic model of rate evolution. , 2001, Molecular biology and evolution.
[18] S. Morris,et al. Early Radiation of Biomineralizing Phyla , 1992 .
[19] M. Fedonkin,et al. The Late Precambrian fossil Kimberella is a mollusc-like bilaterian organism , 1997, Nature.
[20] A. Knoll,et al. Three-dimensional preservation of algae and animal embryos in a Neoproterozoic phosphorite , 1998, Nature.
[21] M. Brasier,et al. Did Supercontinental Amalgamation Trigger the “Cambrian Explosion”? , 2003 .
[22] R. DeSalle,et al. Class-level relationships in the phylum Cnidaria: molecular and morphological evidence. , 1995, Molecular biology and evolution.
[23] Chen,et al. Precambrian sponges with cellular structures , 1998, Science.
[24] J. W. Valentine. Dickinsonia as a polypoid organism , 1992, Paleobiology.
[25] W. Müller. Origin of Metazoa: Sponges as Living Fossils , 1998, Naturwissenschaften.
[26] J. W. Valentine. How were vendobiont bodies patterned? , 2001, Paleobiology.
[27] K. Towe. Oxygen-collagen priority and the early metazoan fossil record. , 1970, Proceedings of the National Academy of Sciences of the United States of America.
[28] M. Brasier. The dawn of animal life , 1987 .
[29] J. Hayes,et al. Terminal Proterozoic reorganization of biogeochemical cycles , 1995, Nature.
[30] Halverson,et al. A neoproterozoic snowball earth , 1998, Science.
[31] L. Ramsköld,et al. Composition and preservation of the Chengjiang fauna –a Lower Cambrian soft‐bodied biota , 1991 .
[32] A. Knoll. Breathing room for early animals , 1996, Nature.
[33] W. B. Harland,et al. A Geologic time scale , 1982 .
[34] J. W. Valentine,et al. The significance of moulting in Ecdysozoan evolution , 2000, Evolution & development.
[35] Michael J. Sanderson,et al. A Nonparametric Approach to Estimating Divergence Times in the Absence of Rate Constancy , 1997 .
[36] J. William Schopf,et al. The Proterozoic biosphere : a multidisciplinary study , 1992 .
[37] N. Butterfield. Plankton ecology and the Proterozoic-Phanerozoic transition , 1997, Paleobiology.
[38] S. Morris,et al. A Burgess shale-like fauna from the Lower Cambrian of North Greenland , 1987, Nature.
[39] A. Zhuravlev,et al. The Lower Cambrian Fossil Record of the Soviet Union , 1992 .
[40] B. Galliot,et al. Origin of anterior patterning. How old is our head? , 2000, Trends in genetics : TIG.
[41] E. Davidson,et al. Precambrian animal diversity: putative phosphatized embryos from the Doushantuo Formation of China. , 2000, Proceedings of the National Academy of Sciences of the United States of America.
[42] B. Schierwater,et al. Class-level relationships in the phylum Cnidaria: evidence from mitochondrial genome structure. , 1992, Proceedings of the National Academy of Sciences of the United States of America.
[43] J. Finnerty,et al. Ancient origins of axial patterning genes: Hox genes and ParaHox genes in the Cnidaria , 1999, Evolution & development.
[44] A. Seilacher. Vendobionta and Psammocorallia: lost constructions of Precambrian evolution , 1992, Journal of the Geological Society.
[45] S. Gould. The Shape of Life , 1996 .
[46] J. W. Valentine,et al. Developmental evolution of metazoan bodyplans: the fossil evidence. , 1996, Developmental biology.
[47] S. Bowring,et al. Duration of the Early Cambrian: U-Pb ages of volcanic ashes from Avalon and Gondwana , 1998 .
[48] Donald E. Canfield,et al. Late Proterozoic rise in atmospheric oxygen concentration inferred from phylogenetic and sulphur-isotope studies , 1996, Nature.
[49] A. J. Kaufman,et al. Biostratigraphic and Geochronologic Constraints on Early Animal Evolution , 1995, Science.
[50] S. Carroll,et al. Early animal evolution: emerging views from comparative biology and geology. , 1999, Science.
[51] S. Stanley. An ecological theory for the sudden origin of multicellular life in the late precambrian. , 1973, Proceedings of the National Academy of Sciences of the United States of America.
[52] K. Fauchald. Polychaete Phylogeny: A Problem in Protostome Evolution , 1974 .
[53] Douglas H. Erwin,et al. The Origin of Animal Body Plans , 1997 .
[54] James W. Valentine,et al. WHY NO NEW PHYLA AFTER THE CAMBRIAN? GENOME AND ECOSPACE HYPOTHESES REVISITED , 1995 .
[55] M. Lynch,et al. The evolutionary fate and consequences of duplicate genes. , 2000, Science.
[56] G. Vidal,et al. Biodiversity, speciation, and extinction trends of Proterozoic and Cambrian phytoplankton , 1997, Paleobiology.
[57] F. Ayala,et al. Vagaries of the molecular clock. , 1997, Proceedings of the National Academy of Sciences of the United States of America.
[58] S. Matthews,et al. Small shelly fossils of late Precambrian and early Cambrian age: a review of recent work , 1975, Journal of the Geological Society.
[59] G. Shields,et al. Integrated chemo- and biostratigraphic calibration of early animal evolution: Neoproterozoic–early Cambrian of southwest Mongolia , 1996, Geological Magazine.
[60] S. Morris,et al. Lower Cambrian vertebrates from south China , 1999, Nature.
[61] K. Kuma,et al. Multiple Protein Tyrosine Phosphatases in Sponges and Explosive Gene Duplication in the Early Evolution of Animals Before the Parazoan–Eumetazoan Split , 1999, Journal of Molecular Evolution.
[62] Michael D. Hendy,et al. The Power of Relative Rates Tests Depends on the Data , 2000, Journal of Molecular Evolution.
[63] M. Manuel,et al. Homeobox gene diversification in the calcareous sponge, Sycon raphanus. , 2000, Molecular phylogenetics and evolution.
[64] J. Lipps,et al. The Origin and Early Evolution of Metazoa , 1992 .