Does Empirical Embeddedness Matter? Methodological Issues on Agent-Based Models for Analytical Social Science

The paper deals with the use of empirical data in social science agent-based models. Agent-based models are too often viewed just as highly abstract thought experiments conducted in artificial worlds, in which the purpose is to generate and not to test theoretical hypotheses in an empirical way. On the contrary, they should be viewed as models that need to be embedded into empirical data both to allow the calibration and the validation of their findings. As a consequence, the search for strategies to find and extract data from reality, and integrate agent-based models with other traditional empirical social science methods, such as qualitative, quantitative, experimental and participatory methods, becomes a fundamental step of the modelling process. The paper argues that the characteristics of the empirical target matter. According to characteristics of the target, ABMs can be differentiated into case-based models, typifications and theoretical abstractions. These differences pose different challenges for empirical data gathering, and imply the use of different validation strategies.

[1]  Mario Paolucci,et al.  Reputation in Artificial Societies , 2002, Multiagent Systems, Artificial Societies, and Simulated Organizations.

[2]  Nicoletta Stame,et al.  Theory-Based Evaluation and Types of Complexity , 2004 .

[3]  Lewis A. Coser,et al.  Masters of Sociological Thought: Ideas in Historical and Social Context. , 1972 .

[4]  Richard M. Burton,et al.  Validating and docking: an overview, summary, and challenge , 1998 .

[5]  Joshua M. Epstein,et al.  The Evolution of Social Behavior in the Prehistoric American Southwest , 2003, Artificial Life.

[6]  M. Janssen,et al.  COMPLEXITY AND ECOSYSTEM MANAGEMENT , 2002 .

[7]  Scott Moss,et al.  Critical Incident Management: An Empirically Derived Computational Model , 1998, J. Artif. Soc. Soc. Simul..

[8]  G. Nigel Gilbert,et al.  Simulation for the social scientist , 1999 .

[9]  Thomas Brenner,et al.  The Use of Simulations in Developing Robust Knowledge about Causal Processes: Methodological Considerations and an Application to Industrial Evolution , 2003 .

[10]  Olivier Barreteau,et al.  Multi-agent systems and role games : collective learning processes for ecosystem management , 2002 .

[11]  Robert E. Marks,et al.  Validating Simulation Models: A General Framework and Four Applied Examples , 2007 .

[12]  Thomas Brenner,et al.  Empirical Calibration of Simulation Models , 2004 .

[13]  Timothy A. Kohler,et al.  Dynamics in human and primate societies: agent-based modeling of social and spatial processes , 2000 .

[14]  Robert O. Keohane,et al.  Designing Social Inquiry: Scientific Inference in Qualitative Research. , 1995 .

[15]  Mario Paolucci,et al.  Reputation in Artificial Societies , 2012, Multiagent Systems, Artificial Societies, and Simulated Organizations.

[16]  J. Elster Ulysses and the Sirens: Studies in Rationality and Irrationality , 1985 .

[17]  Bruce Edmonds,et al.  Towards Good Social Science , 2005, J. Artif. Soc. Soc. Simul..

[18]  Junfu Zhang Growing Silicon Valley on a landscape: an agent-based approach to high-tech industrial clusters , 2003 .

[19]  Nicholas Mark Gotts,et al.  Agent-Based Simulation in the Study of Social Dilemmas , 2003, Artificial Intelligence Review.

[20]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .

[21]  Nicholas Mark Gotts,et al.  Comparative Analysis of Agent-based Social Simulations: GeoSim and FEARLUS models , 2003, J. Artif. Soc. Soc. Simul..

[22]  R. Mare,et al.  Neighborhood Choice and Neighborhood Change1 , 2006, American Journal of Sociology.

[23]  Christophe Le Page,et al.  A Step-by-step Approach to Building Land Management Scenarios Based on Multiple Viewpoints on Multi-agent System Simulations , 2003, J. Artif. Soc. Soc. Simul..

[24]  J. Gareth Polhill,et al.  FEARLUS-W : An Agent-Based Model of River Basin Land Use and Water Management , 2003 .

[25]  W. Hamilton,et al.  The evolution of cooperation. , 1984, Science.

[26]  Robert Hoffmann,et al.  Twenty Years on: The Evolution of Cooperation Revisited , 2000, J. Artif. Soc. Soc. Simul..

[27]  P. Hedström,et al.  Social Mechanisms: An Analytical Approach to Social Theory. , 1999 .

[28]  John L. Casti,et al.  Complexification: Explaining a Paradoxical World Through the Science of Surprise , 1994 .

[29]  Nicolaas J. Vriend,et al.  Evolving market structure: An ACE model of price dispersion and loyalty , 2001 .

[30]  Robert L. Axtell,et al.  Aligning simulation models: A case study and results , 1996, Comput. Math. Organ. Theory.

[31]  Norbert Elias,et al.  The Civilizing Process , 1939 .

[32]  Baker H. Morrow,et al.  Anasazi Architecture and American Design , 1997 .

[33]  Jon Elster,et al.  Social Mechanisms: A plea for mechanisms , 1998 .

[34]  D. Sallach,et al.  Proceedings of the Agent 2002 Conference on Social Agents : Ecology, Exchange, and Evolution , 2003 .

[35]  Giuseppe Zollo,et al.  Inter-Organizational Learning and Collective Memory in Small Firms Clusters: an Agent-Based Approach , 2005, J. Artif. Soc. Soc. Simul..

[36]  Giorgos Zacharia,et al.  Trust management through reputation mechanisms , 2000, Appl. Artif. Intell..

[37]  S. Salthe Varieties of emergence , 1991 .

[38]  Flaminio Squazzoni,et al.  Towards an Agent-Based Computational Sociology : Good Reasons to Strengthen a Cross-Fertilization Between Complexity and Sociology , 2005 .

[39]  Nigel Gilbert,et al.  Varieties of emergence , 2002 .

[40]  Mike Holcombe,et al.  Coupled computational simulation and empirical research into the foraging system of Pharaoh's ant (Monomorium pharaonis). , 2004, Bio Systems.

[41]  Andrew M. Colman,et al.  The complexity of cooperation: Agent-based models of competition and collaboration , 1998, Complex..

[42]  Bruce Edmonds,et al.  From KISS to KIDS - An 'Anti-simplistic' Modelling Approach , 2004, MABS.

[43]  P. Hedström,et al.  Social mechanisms : an analytical approach to social theory , 1999 .

[44]  Fiorenza Belussi,et al.  The Technological Evolution of Industrial Districts , 2003 .

[45]  Nicholas Mark Gotts,et al.  IMITATIVE VERSUS NONIMITATIVE STRATEGIES IN A LAND-USE SIMULATION , 2001, Cybern. Syst..

[46]  Andreas Pyka,et al.  Applied Evolutionary Economics and Social Simulation , 2004, J. Artif. Soc. Soc. Simul..

[47]  Robert L. Axtell,et al.  WHY AGENTS? ON THE VARIED MOTIVATIONS FOR AGENT COMPUTING IN THE SOCIAL SCIENCES , 2000 .

[48]  Nicolaas J. Vriend,et al.  Schelling's Spatial Proximity Model of Segregation Revisited , 2003 .

[49]  B. Edmonds,et al.  Sociology and Simulation: Statistical and Qualitative Cross‐Validation1 , 2005, American Journal of Sociology.

[50]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[51]  Nicola Walker,et al.  The Civilizing Process , 2021, Encyclopedia of Evolutionary Psychological Science.

[52]  Guido Fioretti,et al.  Information Structure and Behaviour of a Textile Industrial District , 2001, J. Artif. Soc. Soc. Simul..

[53]  B. Edmonds,et al.  Replication, Replication and Replication: Some hard lessons from model alignment , 2003, J. Artif. Soc. Soc. Simul..

[54]  Lewis A. Coser,et al.  Masters of sociological thought : ideas in historical and social context , 1972 .

[55]  Ilaria Giannoccaro,et al.  Coordination Mechanisms based on Cooperation and Competition within Industrial Districts: An agent-based computational approach , 2003, J. Artif. Soc. Soc. Simul..

[56]  Robert G. Sargent,et al.  Validating simulation models , 1983, WSC '83.

[57]  Ugo Merlone,et al.  From Classroom Experiments to Computer Code , 2004, J. Artif. Soc. Soc. Simul..

[58]  Flaminio Squazzoni,et al.  Economic Performance, Inter-Firm Relations and Local Institutional Engineering in a Computational Prototype of Industrial Districts , 2002, J. Artif. Soc. Soc. Simul..

[59]  David A. Lane,et al.  Complexity and Local Interactions: Towards a Theory of Industrial Districts , 2002 .

[60]  R. Keith Sawyer,et al.  Artificial Societies , 2003 .

[61]  Joshua M. Epstein,et al.  Understanding Anasazi culture change through agent-based modeling , 2000 .

[62]  Rick L. Riolo,et al.  Beyond Geography: Cooperation with Persistent Links in the Absence of Clustered Neighborhoods , 2002 .

[63]  L. Haworth,et al.  Social Theory and Social Structure. Robert Merton , 1959 .

[64]  S. Gould,et al.  Punctuated equilibria: the tempo and mode of evolution reconsidered , 1977, Paleobiology.

[65]  Peter Tyson,et al.  Artificial societies , 1997 .

[66]  M. Macy,et al.  FROM FACTORS TO ACTORS: Computational Sociology and Agent-Based Modeling , 2002 .

[67]  Jon Elster,et al.  Ulysses Unbound: Studies in Rationality, Precommitment, and Constraints , 2000 .

[68]  Erol Taymaz,et al.  Institutions, entrepreneurship, economic flexibility and growth - experiments on an evolutionary micro-to-macro model , 2002 .

[69]  David Willer,et al.  Theoretical Concepts and Observables , 1970 .

[70]  Norbert Elias,et al.  The Court Society , 1983 .

[71]  François Bousquet,et al.  Role-playing games for opening the black box of multi-agent systems: method and lessons of its application to Senegal River Valley irrigated systems , 2001, J. Artif. Soc. Soc. Simul..

[72]  J. Bohman,et al.  The methodology of the social sciences , 2003 .

[73]  Timothy A. Kohler,et al.  Creating Alternative Cultural Histories in the Prehistoric Southwest: Agent-Based Modeling in Archaeology , 1996 .

[74]  Joshua M. Epstein,et al.  Growing artificial societies , 1996 .

[75]  Flaminio Squazzoni,et al.  Cognitive Identity and Social Reflexivity of the Industrial District Firms. Going Beyond the "Complexity Effect" with Agent-Based Simulations , 2002, RASTA.

[76]  John Duffy,et al.  Agent-Based Models and Human Subject Experiments , 2004 .

[77]  Michael J. Prietula,et al.  Simulating organizations: computational models of institutions and groups , 1998 .

[78]  J. Coleman Foundations of Social Theory , 1990 .

[79]  Nicholas Mark Gotts,et al.  ASPIRATION LEVELS IN A LAND USE SIMULATION , 2003, Cybern. Syst..

[80]  Nicholas Mark Gotts,et al.  The Ghost in the Model (and Other Effects of Floating Point Arithmetic) , 2004, J. Artif. Soc. Soc. Simul..

[81]  Robert Axelrod Advancing the art of simulation in the social sciences , 1997 .

[82]  Joshua M. Epstein,et al.  Growing Artificial Societies: Social Science from the Bottom Up , 1996 .

[83]  Giorgio Gottardi,et al.  Evolutionary patterns of local industrial systems : towards a cognitive approach to the industrial district , 2000 .

[84]  Mauro Gallegati,et al.  Interaction and Market Structure , 2000 .

[85]  Laura A. Carlson,et al.  Empirical Foundations for Agent-Based Modeling: How Do Institutions Affect Agents' Land-Use Decision Processes in Indiana? , 2002 .

[86]  Thomas Brenner,et al.  Simulating the Evolution of Localised Industrial Clusters - An Identification of the Basic Mechanisms , 2001, J. Artif. Soc. Soc. Simul..

[87]  P. Piccone,et al.  For Sociology , 1974, Telos.

[88]  Jorge J. Gómez-Sanz,et al.  Validation and Verification of Multi-agent Systems , 2002 .

[89]  Tommaso Minerva,et al.  Un automa cellulare per lo studio del distretto industriale , 2002 .