Modeling of hydrogen-assisted ductile crack propagation in metals and alloys

This paper presents a finite element study of the hydrogen effect on ductile crack propagation in metals and alloys by linking effects at the microstructural level (i.e., void growth and coalescence) to effects at the macro-level (i.e., bulk material deformation around a macroscopic crack). The purpose is to devise a mechanics methodology to simulate the conditions under which hydrogen enhanced plasticity induces fracture that macroscopically appears to be brittle. The hydrogen effect on enhanced dislocation mobility is described by a phenomenological constitutive relation in which the local flow stress is taken as a decreasing function of the hydrogen concentration which is determined in equilibrium with local stress and plastic strain. Crack propagation is modeled by cohesive elements whose traction separation law is determined through void cell calculations that address the hydrogen effect on void growth and coalescence. Numerical results for the A533B pressure vessel steel indicate that hydrogen, by accelerating void growth and coalescence, promotes crack propagation by linking simultaneously a finite number of voids with the crack tip. This “multiple-void” fracture mechanism knocks down the initiation fracture toughness of the material and diminishes the tearing resistance to crack propagation.

[1]  Viggo Tvergaard,et al.  Effect of strain-dependent cohesive zone model on predictions of crack growth resistance , 1996 .

[2]  H. H. Johnson,et al.  Deep trapping states for hydrogen in deformed iron , 1980 .

[3]  J. Hirth,et al.  Effect of hydrogen on fracture of U-notched bend specimens of quenched and tempered AISI 4340 steel , 1979 .

[4]  J. Hirth,et al.  Hydrogen and Plastic Instability in Deformed Spheroidized 1090 Steel , 2013 .

[5]  Xiaopeng Xu,et al.  Effect of inhomogeneities on dynamic crack growth in an elastic solid , 1997 .

[6]  J. Hirth,et al.  Effect of hydrogen on fracture of U-notched bend specimens of spheroidized AISI 1095 steel , 1979 .

[7]  W. Gerberich,et al.  On the directional dependency of microplasticity for cleavage in Fe-3wt%Si single crystals , 1990 .

[8]  Robert H. Dodds,et al.  Effect of hydrogen trapping on void growth and coalescence in metals and alloys , 2008 .

[9]  A. Thompson,et al.  The effect of hydrogen on the fracture of alloy x-750 , 1996 .

[10]  Thomas Siegmund,et al.  The Role of Cohesive Strength and Separation Energy for Modeling of Ductile Fracture , 2000 .

[11]  John W. Hutchinson,et al.  A computational approach to ductile crack growth under large scale yielding conditions , 1995 .

[12]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[13]  P. Sofronis,et al.  5737 - A COUPLED DISLOCATION-HYDROGEN BASED MODEL OF INELASTIC DEFORMATION , 2005 .

[14]  J. Hutchinson,et al.  The influence of plasticity on mixed mode interface toughness , 1993 .

[15]  R. A. Oriani,et al.  The diffusion and trapping of hydrogen in steel , 1970 .

[16]  Petros Athanasios Sofronis,et al.  On hydrogen-induced plastic flow localization during void growth and coalescence , 2007 .

[17]  V. Tvergaard On localization in ductile materials containing spherical voids , 1982, International Journal of Fracture.

[18]  Claudio Ruggieri,et al.  Numerical modeling of ductile crack growth in 3-D using computational cell elements , 1996 .

[19]  M. Ortiz,et al.  FINITE-DEFORMATION IRREVERSIBLE COHESIVE ELEMENTS FOR THREE-DIMENSIONAL CRACK-PROPAGATION ANALYSIS , 1999 .

[20]  Direct observations of hydrogen enhanced crack propagation in iron , 1984 .

[21]  H. Peisl,et al.  Lattice strains due to hydrogen in metals , 1978 .

[22]  C. D. Beachem,et al.  A new model for hydrogen-assisted cracking (hydrogen “embrittlement”) , 1972 .

[23]  B. Carnahan,et al.  HYDROGEN ADSORPTION AT DISLOCATIONS AND CRACKS IN Fe , 1978 .

[24]  V. Tvergaard Crack growth predictions by cohesive zone model for ductile fracture , 2001 .

[25]  D. Delafosse,et al.  Numerical simulations of hydrogen–dislocation interactions in fcc stainless steels.: part I: hydrogen–dislocation interactions in bulk crystals , 2002 .

[26]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[27]  W. Gerberich,et al.  The kinetics and micromechanics of hydrogen assisted cracking in Fe-3 pct Si single crystals , 1991 .

[28]  M. F. Kanninen,et al.  Inelastic Behavior of Solids , 1970, Science.

[29]  Ian M. Robertson,et al.  The effect of hydrogen on dislocation dynamics , 1999 .

[30]  A. Needleman An analysis of tensile decohesion along an interface , 1990 .

[31]  W. Gerberich,et al.  Grain Size Effects in Hydrogen-Assisted Cracking , 1976 .

[32]  R. A. Oriani,et al.  Hydrogen-enhanced nucleation of microcavities in aisi 1045 steel , 1979 .

[33]  W. Brocks,et al.  Application of the Gurson Model to Ductile Tearing Resistance , 1995 .

[34]  R. H. Dodds,et al.  Ductile crack growth in pre-cracked CVN specimens: numerical studies , 1998 .

[35]  Robert O. Ritchie,et al.  Critical fracture stress and fracture strain models for the prediction of lower and upper shelf toughness in nuclear pressure vessel steels , 1979 .

[36]  P. Sofronis,et al.  A micromechanics approach to the study of hydrogen transport and embrittlement , 2001 .

[37]  Alan Needleman,et al.  Numerical modeling of crack growth under dynamic loading conditions , 1997 .

[38]  S. Lynch Nucleation and Egress of Dislocations at Crack Tips , 1983 .

[39]  A. Gurson Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I—Yield Criteria and Flow Rules for Porous Ductile Media , 1977 .

[40]  Robert H. Dodds,et al.  Ductile tearing in part-through cracks: experiments and cell-model predictions , 1998 .

[41]  A. Needleman A Continuum Model for Void Nucleation by Inclusion Debonding , 1987 .

[42]  R. Latanision,et al.  Atomistics of fracture , 1970 .

[43]  David J. Smith,et al.  Constraint Effects in Fracture : Theory and Applications ASTM STP 1244 , 1995 .

[44]  Thomas Pardoen,et al.  An extended model for void growth and coalescence - application to anisotropic ductile fracture , 2000 .

[45]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .

[46]  A. Thompson,et al.  Effect of hydrogen on fracture behavior of a quenched and tempered medium-carbon steel , 1981 .

[47]  C. Shih,et al.  Ductile crack growth-I. A numerical study using computational cells with microstructurally-based length scales , 1995 .

[48]  Thomas Pardoen,et al.  Micromechanics-based model for trends in toughness of ductile metals , 2003 .

[49]  T. Siegmund,et al.  Prediction of the Work of Separation and Implications to Modeling , 1999 .

[50]  M. Williams,et al.  On the Stress Distribution at the Base of a Stationary Crack , 1956 .

[51]  R. A. Oriani,et al.  The Thermodynamics of Stressed Solids , 1966 .

[52]  Petros Athanasios Sofronis,et al.  Hydrogen-enhanced localized plasticity—a mechanism for hydrogen-related fracture , 1993 .

[53]  Petros Athanasios Sofronis,et al.  Hydrogen induced shear localization of the plastic flow in metals and alloys , 2001 .

[54]  A. Needleman,et al.  Mesh effects in the analysis of dynamic ductile crack growth , 1994 .

[55]  R. A. Oriani,et al.  Equilibrium aspects of hydrogen-induced cracking of steels , 1974 .

[56]  M. Ortiz,et al.  A quantum-mechanically informed continuum model of hydrogen embrittlement , 2004 .

[57]  H. Birnbaum,et al.  Direct observations of the effect of hydrogen on the behavior of dislocations in iron , 1983 .

[58]  D. Delafosse,et al.  Hydrogen induced plasticity in stress corrosion cracking of engineering systems , 2001 .

[59]  Xiaopeng Xu,et al.  Numerical simulations of fast crack growth in brittle solids , 1994 .

[60]  T. Siegmund,et al.  A numerical study on the correlation between the work of separation and the dissipation rate in ductile fracture , 2000 .

[61]  H. Birnbaum,et al.  An HVEM study of hydrogen effects on the deformation and fracture of nickel , 1986 .

[62]  G. M. Bond,et al.  On the mechanisms of hydrogen embrittlement of Ni3Al alloys , 1989 .

[63]  W. Gerberich,et al.  Crack-tip strain fields and fracture microplasticity in hydrogen-induced cracking of Fe-3 wt% Si single crystals , 1991 .

[64]  S. Lynch Metallographic contributions to understanding mechanisms of environmentally assisted cracking , 1989 .

[65]  A. Kimura,et al.  Hydrogen embrittlement in high purity iron single crystals , 1986 .

[66]  T. Siegmund,et al.  Local fracture criteria : Lengthscales and applications , 1998 .

[67]  S. Lynch Environmentally Assisted Cracking: Overview of Evidence for an Adsorption-Induced Localised-Slip Process, , 1988 .

[68]  I. M. Robertson,et al.  An HVEM In situ deformation study of nickel doped with sulfur , 1989 .

[69]  I. M. Robertson,et al.  In situ observations on effects of hydrogen on deformation and fracture of A533B pressure vessel steel , 1993 .

[70]  Alan Needleman,et al.  Void growth and coalescence in porous plastic solids , 1988 .

[71]  C. Mcmahon,et al.  Strain controlled vs stress controlled hydrogen induced fracture in a quenched and tempered steel , 1981 .

[72]  J. Janca,et al.  Microwave torch combined with conventional burner , 1998 .

[73]  E. Carter,et al.  First principles assessment of ideal fracture energies of materials with mobile impurities: implications for hydrogen embrittlement of metals , 2004 .

[74]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[75]  W. Gerberich,et al.  Hydrogen-induced sustained load cracking in single crystal Fe-3wt.%Si , 1988 .

[76]  R. H. Dodds,et al.  Interaction of hydrogen with crack-tip plasticity: effects of constraint on void growth , 2004 .

[77]  A. de-Andrés,et al.  Elastoplastic finite element analysis of three-dimensional fatigue crack growth in aluminum shafts subjected to axial loading , 1999 .

[78]  R. H. Dodds,et al.  Simulation of ductile crack growth in thin aluminum panels using 3-D surface cohesive elements , 2001 .

[79]  E. Carter,et al.  Diffusion of interstitial hydrogen into and through bcc Fe from first principles , 2004 .

[80]  J. E. Stein,et al.  Gas-phase hydrogen permeation through alpha iron, 4130 steel, and 304 stainless steel from less than 100 C to near 600 C , 1973 .

[81]  O. A. Onyewuenyi,et al.  Effects of hydrogen on notch ductility and fracture in spheroidized AISI 1090 steel , 1983 .

[82]  F. A. McClintock,et al.  A Criterion for Ductile Fracture by the Growth of Holes , 1968 .

[83]  Robert H. Dodds,et al.  Ductile tearing and discrete void effects on cleavage fracture under small-scale yielding conditions , 2005 .

[84]  D. M. Tracey,et al.  On the ductile enlargement of voids in triaxial stress fields , 1969 .

[85]  D. Symons The effect of carbide precipitation on the hydrogen-enhanced fracture behavior of alloy 690 , 1998 .

[86]  Viggo Tvergaard,et al.  An analysis of ductile rupture modes at a crack tip , 1987 .