A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities

We introduce a multidimensional peridynamic formulation for transient heat-transfer. The model does not contain spatial derivatives and uses instead an integral over a region around a material point. By construction, the formulation converges to the classical heat transfer equations in the limit of the horizon (the nonlocal region around a point) going to zero. The new model, however, is suitable for modeling, for example, heat flow in bodies with evolving discontinuities such as growing insulated cracks. We introduce the peridynamic heat flux which exists even at sharp corners or when the isotherms are not smooth surfaces. The peridynamic heat flux coincides with the classical one in simple cases and, in general, it converges to it in the limit of the peridynamic horizon going to zero. We solve test problems and compare results with analytical solutions of the classical model or with other numerical solutions. Convergence to the classical solutions is seen in the limit of the horizon going to zero. We then solve the problem of transient heat flow in a plate in which insulated cracks grow and intersect thus changing the heat flow patterns. We also model heat transfer in a fiber-reinforced composite and observe transient but steep thermal gradients at the interfaces between the highly conductive fibers and the low conductivity matrix. Such thermal gradients can lead to delamination cracks in composites from thermal fatigue. The formulation may be used to, for example, evaluate effective thermal conductivities in bodies with an evolving distribution of insulating or permeable, possibly intersecting, cracks of arbitrary shapes.

[1]  Mahan,et al.  Nonlocal theory of thermal conductivity. , 1988, Physical review. B, Condensed matter.

[2]  George A. Gazonas,et al.  On the effective electroelastic properties of microcracked generally anisotropic solids , 2009 .

[3]  Joerg R. Seume,et al.  Impact of the Temperature Profile on Thermal Stress in a Tubular Solid Oxide Fuel Cell , 2009 .

[4]  S. Silling,et al.  Viscoplasticity using peridynamics , 2010 .

[5]  Ravi P. Agarwal,et al.  Ordinary and Partial Differential Equations , 2009 .

[6]  Chen Wen-Hwa,et al.  Analysis of three-dimensional thermoelastic fracture problems using path-independent integrals , 1991 .

[7]  Brian J. Koeppel,et al.  Prediction of crack propagation paths in the unit cell of SOFC stacks , 2009 .

[8]  G. C. Sih,et al.  Heat Conduction in the Infinite Medium With Lines of Discontinuities , 1965 .

[9]  S. Silling,et al.  Peridynamic States and Constitutive Modeling , 2007 .

[10]  R. Lehoucq,et al.  Convergence of Peridynamics to Classical Elasticity Theory , 2008 .

[11]  J. Virmont,et al.  Nonlocal heat transport due to steep temperature gradients , 1983 .

[12]  K. N. Seetharamu,et al.  Fundamentals of the Finite Element Method for Heat and Fluid Flow , 2004 .

[13]  Stewart Andrew Silling,et al.  Dynamic fracture modeling with a meshfree peridynamic code , 2003 .

[14]  Yukihiro Tanaka,et al.  Phonon group velocity and thermal conduction in superlattices , 1999 .

[15]  C. L. Tien,et al.  MOLECULAR DYNAMICS IN MICROSCALE THERMOPHYSICAL ENGINEERING , 1999 .

[16]  W. H. Chen,et al.  Hybrid finite element analysis of transient thermoelastic fracture problems subjected to general heat transfer conditions , 1988 .

[17]  J. C. Jaeger,et al.  Conduction of Heat in Solids , 1952 .

[18]  D. Jenkins,et al.  Determination of crack spacing and penetration due to shrinkage of a solidifying layer , 2009 .

[19]  Dominic G.B. Edelen,et al.  Irreversible thermodynamics of nonlocal systems , 1974 .

[20]  A. C. Eringen,et al.  Nonlocal theory of wave propagation in thermoelastic plates , 1991 .

[21]  A. Bejan,et al.  Heat transfer handbook , 2003 .

[22]  Leon M Keer,et al.  Unstable growth of thermally induced interacting cracks in brittle solids , 1978 .

[23]  Youn Doh Ha,et al.  Numerical Integration in Peridynamics , 2010 .

[24]  L. Sander,et al.  Diffusion-limited aggregation , 1983 .

[25]  Janis Varna,et al.  Effect of thermal aging and fatigue on failure resistance of aerospace composite materials , 2009 .

[26]  Gilbert Fantozzi,et al.  Thermal shock and thermal fatigue study of ceramic materials on a newly developed ascending thermal shock test equipment , 2002 .

[27]  Youn Doh Ha,et al.  Peridynamic model for dynamic fracture in unidirectional fiber-reinforced composites , 2012 .

[28]  Chen Wen-Hwa,et al.  Heat conduction analysis of a plate with multiple insulated cracks by the finite element alternating method , 1994 .

[29]  D. R. Bland,et al.  The Method of Separation of Variables , 1961 .

[30]  Fischer,et al.  Phonon radiative heat transfer and surface scattering. , 1988, Physical review. B, Condensed matter.

[31]  F. Rachbauer,et al.  Heat distribution and heat transport in bone during radiofrequency catheter ablation , 2003, Archives of Orthopaedic and Trauma Surgery.

[32]  S. Silling Reformulation of Elasticity Theory for Discontinuities and Long-Range Forces , 2000 .

[33]  Florin Bobaru,et al.  The peridynamic formulation for transient heat conduction , 2010 .

[34]  Daniel Rittel,et al.  Experimental investigation of transient thermoplastic effects in dynamic fracture , 1998 .

[35]  Luigi Preziosi,et al.  Addendum to the paper "Heat waves" [Rev. Mod. Phys. 61, 41 (1989)] , 1990 .

[36]  H. Petersson,et al.  Introduction to the finite element method , 1992 .

[37]  Fan Yang,et al.  Thermal shock modeling of Ultra-High Temperature Ceramics under active cooling , 2009, Comput. Math. Appl..

[38]  J R MacFall,et al.  3D numerical reconstruction of the hyperthermia induced temperature distribution in human sarcomas using DE-MRI measured tissue perfusion: validation against non-invasive MR temperature measurements. , 2001, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[39]  L. Kantorovich,et al.  Approximate methods of higher analysis , 1960 .

[40]  F. Bobaru,et al.  Studies of dynamic crack propagation and crack branching with peridynamics , 2010 .

[41]  Kaushik Bhattacharya,et al.  Kinetics of phase transformations in the peridynamic formulation of continuum mechanics , 2006 .

[42]  BobaruFlorin,et al.  A peridynamic formulation for transient heat conduction in bodies with evolving discontinuities , 2012 .

[43]  F. Bobaru,et al.  The Meaning, Selection, and Use of the Peridynamic Horizon and its Relation to Crack Branching in Brittle Materials , 2012, International Journal of Fracture.

[44]  Feifan Zhou,et al.  Investigation of the heat caused autophagy in living cells , 2009, 2009 Conference on Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics.

[45]  Christer Persson,et al.  In-situ ESEM study of thermo-mechanical fatigue crack propagation , 2008 .

[46]  Kin Leong Pey,et al.  The nature of dielectric breakdown , 2008 .

[47]  L. Flandin,et al.  Dielectric breakdown of epoxy-based composites: relative influence of physical and chemical aging , 2006, IEEE Transactions on Dielectrics and Electrical Insulation.

[48]  H. Zeller,et al.  Breakdown and Prebreakdown Phenomena in Solid Dielectrics , 1987, IEEE Transactions on Electrical Insulation.

[49]  T. L. Warren,et al.  A non-ordinary state-based peridynamic method to model solid material deformation and fracture , 2009 .

[50]  Richard B. Lehoucq,et al.  Force flux and the peridynamic stress tensor , 2008 .

[51]  R. Lehoucq,et al.  Peridynamics for multiscale materials modeling , 2008 .

[52]  Chenq-Shyoung Chang,et al.  Analysis of two-dimensional mixed-mode crack problems by finite element alternating method , 1989 .

[53]  Young,et al.  Lattice-dynamical calculation of the Kapitza resistance between fcc lattices. , 1989, Physical review. B, Condensed matter.

[54]  Steven J. Plimpton,et al.  Implementing peridynamics within a molecular dynamics code , 2007, Comput. Phys. Commun..

[55]  Miroslav Grmela,et al.  Finite-speed propagation of heat: a nonlocal and nonlinear approach , 1998 .

[56]  Jifeng Xu,et al.  Peridynamic Analysis of Impact Damage in Composite Laminates , 2008 .

[57]  S. Silling,et al.  Peridynamic modeling of membranes and fibers , 2004 .

[58]  John G. Webster,et al.  Finite-Element Analysis of Hepatic Cryoablation Around a Large Blood Vessel , 2008, IEEE Transactions on Biomedical Engineering.

[59]  K. Huebner The finite element method for engineers , 1975 .

[60]  M Barrett,et al.  HEAT WAVES , 2019, The Year of the Femme.

[61]  Peter Supancic,et al.  Geometry Effect on the Thermal Shock Response of Al2O3/ZrO2 Multilayered Ceramics , 2007 .

[62]  J.-F. Maire,et al.  Analysis of how thermal aging affects the long-term mechanical behavior and strength of polymer–matrix composites , 2005 .

[63]  L. Pietronero,et al.  Fractal Dimension of Dielectric Breakdown , 1984 .

[64]  K. Kao,et al.  Dielectric phenomena in solids : with emphasis on physical concepts of electronic processes , 2004 .

[65]  W. K. Wilson,et al.  The use of the J-integral in thermal stress crack problems , 1979, International Journal of Fracture.

[66]  Elizabeth A. Repasky,et al.  Dissecting the role of hyperthermia in natural killer cell mediated anti-tumor responses , 2008, International journal of hyperthermia : the official journal of European Society for Hyperthermic Oncology, North American Hyperthermia Group.

[67]  M. Bushnell,et al.  Effect of Ambient Temperature on Human Pain and Temperature Perception , 2000, Anesthesiology.

[68]  Daniel E. Geer,et al.  Convergence , 2021, IEEE Secur. Priv..

[69]  E. Sparrow,et al.  Handbook of Numerical Heat Transfer , 1988 .

[70]  A. Haji-sheikh,et al.  Heat Conduction Using Green's Function , 1992 .

[71]  S. Silling,et al.  Convergence, adaptive refinement, and scaling in 1D peridynamics , 2009 .

[72]  A. Eringen,et al.  On nonlocal elasticity , 1972 .

[73]  Karl Ludwig,et al.  Osteoid osteoma in an ex vivo animal model: temperature changes in surrounding soft tissue during CT-guided radiofrequency ablation. , 2006, Radiology.

[74]  I. Kunin,et al.  Elastic Media with Microstructure I: One-Dimensional Models , 1982 .

[75]  M. J. Wheeler Heat and Mass Transfer , 1968, Nature.

[76]  H. R. Zeller,et al.  A fractal model of dielectric breakdown and prebreakdown in solid dielectrics , 1986 .

[77]  F. Bobaru Influence of van der Waals forces on increasing the strength and toughness in dynamic fracture of nanofibre networks: a peridynamic approach , 2007 .

[78]  Viorel Barbu Partial Differential Equations and Boundary Value Problems , 1998 .

[79]  Hidenori Akiyama,et al.  Breakdown and destruction of heterogeneous solid dielectrics by high voltage pulses , 1998 .

[80]  Yves Rémond,et al.  Modeling of thermal shock-induced damage in a borosilicate glass , 2010 .

[81]  Chen Wen-Hwa,et al.  Analysis of two dimensional fracture problems with multiple cracks under mixed boundary conditions , 1989 .

[82]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[83]  Y. Çengel Heat Transfer: A Practical Approach , 1997 .

[84]  Zeljko Vujaskovic,et al.  Randomized trial of hyperthermia and radiation for superficial tumors. , 2005, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[85]  M. Greenberg Advanced Engineering Mathematics , 1988 .

[86]  Steven C. Chapra,et al.  Numerical Methods for Engineers , 1986 .

[87]  A. Cemal Eringen,et al.  Theory of nonlocal thermoelasticity , 1974 .

[88]  Isaac Shnaid,et al.  Thermodynamically consistent description of heat conduction with finite speed of heat propagation , 2003 .

[89]  Huajian Gao,et al.  Modern topics and challenges in dynamic fracture , 2005 .

[90]  S. Silling,et al.  A meshfree method based on the peridynamic model of solid mechanics , 2005 .

[91]  Weijun Yin,et al.  Dielectric Breakdown of Polymeric Insulations Aged at High Temperatures , 2008, 2008 IEEE International Power Modulators and High-Voltage Conference.

[92]  Chien-Ching Ma,et al.  Transient thermal conduction analysis of a rectangular plate with multiple insulated cracks by the alternating method , 2001 .

[93]  M. Maeda,et al.  [Heat conduction]. , 1972, Kango kyoshitsu. [Nursing classroom].

[94]  Sebastian Volz,et al.  Molecular dynamics simulation of thermal conductivity of silicon nanowires , 1999 .

[95]  Juan Miguel Tristán Fernández,et al.  Treatment of bone tumours by radiofrequency thermal ablation , 2009, Current reviews in musculoskeletal medicine.

[96]  F. Bobaru,et al.  Characteristics of dynamic brittle fracture captured with peridynamics , 2011 .

[97]  Y. T. Feng,et al.  Discrete thermal element modelling of heat conduction in particle systems: Basic formulations , 2008, J. Comput. Phys..

[98]  S. Silling,et al.  Peridynamics via finite element analysis , 2007 .

[99]  Hari M. Srivastava,et al.  Analytic solutions of a two-dimensional rectangular heat equation , 2007 .

[100]  Masayuki Hashimoto,et al.  Heat distribution in the spinal canal during radiofrequency ablation for vertebral lesions: study in swine. , 2008, Radiology.

[101]  T. K. Hellen,et al.  On the solution of the centre cracked plate with a quadratic thermal gradient , 1979 .

[102]  S. L. Sobolev,et al.  Equations of transfer in non-local media , 1994 .

[103]  Roland W. Lewis,et al.  The Finite Element Method in Heat Transfer Analysis , 1996 .

[104]  Youn Doh Ha,et al.  MODELING DYNAMIC FRACTURE AND DAMAGE IN A FIBER-REINFORCED COMPOSITE LAMINA WITH PERIDYNAMICS , 2011 .

[105]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[106]  Chin-Cheng Huang,et al.  Three-dimensional thermoelastic analysis of a cylindrical pipe with an internal surface crack under convection cooling , 1991 .

[107]  Ranjan Mukherjee,et al.  Steady-State and Transient Analysis of a Steam-Reformer Based Solid Oxide Fuel Cell System , 2010 .

[108]  Wen-Hwa Chen,et al.  Finite element analysis of mixed-mode thermoelastic fracture problems , 1985 .

[109]  Yimin Xuan,et al.  Bioheat equation of the human thermal system , 1997 .

[110]  A. L. Rabenstein,et al.  PARTIAL DIFFERENTIAL EQUATIONS AND BOUNDARY-VALUE PROBLEMS , 1972 .

[111]  Wen-Hwa Chen,et al.  On the singularity of temperature gradient near an inclined crack terminating at bimaterial interface , 1992 .