Identifying the dynamic compressive stiffness of a prospective biomimetic elastomer by an inverse method.

[1]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .

[2]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[3]  Y. Fung,et al.  Biomechanics: Mechanical Properties of Living Tissues , 1981 .

[4]  Mary C. Boyce,et al.  Constitutive modeling of the large strain time-dependent behavior of elastomers , 1998 .

[5]  J A Hastings,et al.  A method of residual limb stiffness distribution measurement. , 1999, Journal of rehabilitation research and development.

[6]  R E Baier,et al.  Mechanical characteristics of human skin subjected to static versus cyclic normal pressures. , 1999, Journal of rehabilitation research and development.

[7]  Rolf Mahnken,et al.  A comprehensive study of a multiplicative elastoplasticity model coupled to damage including parameter identification , 2000 .

[8]  M. J. Forrestal,et al.  Dynamic Compression Testing of Soft Materials , 2002 .

[9]  Gábor Székely,et al.  Inverse Finite Element Characterization of Soft Tissues , 2001, MICCAI.

[10]  M. Prange,et al.  Regional, directional, and age-dependent properties of the brain undergoing large deformation. , 2002, Journal of biomechanical engineering.

[11]  Jérôme Crépin,et al.  A procedure for identifying the plastic behavior of single crystals from the local response of polycrystals , 2003 .

[12]  B. Song,et al.  Dynamic stress equilibration in split Hopkinson pressure bar tests on soft materials , 2004 .

[13]  Michelle C LaPlaca,et al.  High rate shear strain of three-dimensional neural cell cultures: a new in vitro traumatic brain injury model. , 2005, Journal of biomechanics.

[14]  Karol Miller,et al.  Method of testing very soft biological tissues in compression. , 2005, Journal of biomechanics.

[15]  Daniel Casem,et al.  Inertial effects of quartz force transducers embedded in a split Hopkinson pressure bar , 2005 .

[16]  M. Giton Hyperelastic Behaviour Identification by Forward Problem Resolution : Application to a Tear Test of a Silicone-Rubber , 2006 .

[17]  Esra Roan,et al.  The nonlinear material properties of liver tissue determined from no-slip uniaxial compression experiments. , 2007, Journal of biomechanical engineering.

[18]  K. T. Ramesh,et al.  Mechanical properties of soft human tissues under dynamic loading. , 2007, Journal of biomechanics.

[19]  K. T. Ramesh,et al.  Measurement of the Dynamic Bulk and Shear Response of Soft Human Tissues , 2007 .

[20]  E. E. Ward,et al.  Computational and experimental models of the human torso for non-penetrating ballistic impact. , 2007, Journal of biomechanics.

[21]  S. Roux,et al.  Digital Image Mechanical Identification (DIMI) , 2007, 0712.3918.

[22]  J. Kajberg,et al.  Viscoplastic parameter estimation by high strain-rate experiments and inverse modelling – Speckle measurements and high-speed photography , 2007 .

[23]  J. Orteu,et al.  Use of 3-D Digital Image Correlation to Characterize the Mechanical Behavior of a Fiber Reinforced Refractory Castable , 2007 .

[24]  Tusit Weerasooriya,et al.  Radial Inertia Effects in Kolsky Bar Testing of Extra-soft Specimens , 2007 .

[25]  R. Dupaix,et al.  Constitutive Modeling of Rate-Dependent Stress–Strain Behavior of Human Liver in Blunt Impact Loading , 2008, Annals of Biomedical Engineering.

[26]  M. Bonnet,et al.  Overview of Identification Methods of Mechanical Parameters Based on Full-field Measurements , 2008 .

[27]  H. Sol,et al.  Identification of Mechanical Material Behavior Through Inverse Modeling and DIC , 2008 .

[28]  Hubert W. Schreier,et al.  Image Correlation for Shape, Motion and Deformation Measurements: Basic Concepts,Theory and Applications , 2009 .