Development of a saline water immersion technique with RF energy as a postharvest treatment against

[1]  N. Bengtsson,et al.  RADIO‐FREQUENCY PASTEURIZATION OF CURED HAMS , 1970 .

[2]  A. Stogryn,et al.  Equations for Calculating the Dielectric Constant of Saline Water (Correspondence) , 1971 .

[3]  S. O. Nelson,et al.  Frequency Dependence of Energy Absorption by Insects and Grain in Electric Fields , 1972 .

[4]  N. Mohsenin Electromagnetic radiation properties of foods and agricultural products , 1984 .

[5]  Robert V. Decareau,et al.  Microwaves in the food processing industry , 1985 .

[6]  V. Y. Yokoyama,et al.  High temperature for control of Oriental fruit moth (Lepidoptera : Tortricidae) in stone fruits , 1987 .

[7]  C. Balanis Advanced Engineering Electromagnetics , 1989 .

[8]  J. Sharp,et al.  Hot-Air Treatment Device for Quarantine Research , 1991 .

[9]  S. Drake,et al.  QUALITY CHARACTERISTICS OF ‘BING’ AND ‘RAINIER’ SWEET CHERRIES TREATED WITH GIBBERELLIC ACID, FOLLOWING FUMIGATION WITH METHYL BROMIDE , 1991 .

[10]  S. Nelson Dielectric properties of agricultural products-measurements and applications , 1991 .

[11]  R. Dowell,et al.  Response of codling moth (Lepidoptera : tortricidae) to high temperature, a potential quarantine treatment for exported commodities , 1991 .

[12]  S. Lurie,et al.  Calcium and Heat Treatments to Improve Storability of `Anna' Apples , 1992 .

[13]  J. Hansen Heating Curve Models of Quarantine Treatments Against Insect Pests , 1992 .

[14]  J. Sharp,et al.  Quarantine Treatments for Pests of Food Plants , 1994 .

[15]  A. Ignesti,et al.  Microwave Destruction of Woodworms , 1994 .

[16]  J. W. Armstrong,et al.  Single-temperature forced hot-air quarantine treatment to control fruit flies (Diptera: Tephritidae) in Papaya , 1995 .

[17]  S. Ryynänen,et al.  The electromagnetic properties of food materials: a review of the basic principles , 1995 .

[18]  L. Neven,et al.  Moist and Vapor Forced Air Treatments of Apples and Pears: Effects on the Mortality of Fifth Instar Codling Moth (Lepidoptera: Tortricidae) , 1996 .

[19]  E. Nordheim,et al.  High-Power Microwave Radiation as an Alternative Insect Control Method for Stored Products , 1996 .

[20]  Stuart O. Nelson,et al.  Review and Assessment of Radio-frequency and Microwave Energy for Stored-grain Insect Control , 1996 .

[21]  A. Metaxas Foundations of Electroheat : A Unified Approach , 1996 .

[22]  R. Mangan,et al.  Tolerance of red-fleshed grapefruit to a constant or stepped temperature, forced-air quarantine heat treatment , 1996 .

[23]  E. Mitcham,et al.  CATTS (Controlled Atmosphere Temperature Treatment System): A Novel Tool for the Development of Quarantine Treatments , 1996 .

[24]  W. Canet,et al.  Thermal and calcium pretreatment affects texture, pectinesterase and pectic substances of frozen sweet cherries , 1997 .

[25]  C. Tong,et al.  Microwave assisted thawing of model frozen foods using feed-back temperature control and surface cooling , 1997 .

[26]  L. Lacey,et al.  Entomopathogenic nematodes for control of diapausing codling moth (Lepidoptera: Tortricidae) in fruit bins. , 1999, Journal of economic entomology.

[27]  J. N. Ikediala,et al.  Quarantine treatment of cherries using 915 MHz microwaves: temperature mapping, codling moth mortality and fruit quality , 1999 .

[28]  Juming Tang,et al.  A HEATING BLOCK SYSTEM FOR STUDYING THERMAL DEATH KINETICS OF INSECT PESTS , 2000 .

[29]  Juming Tang,et al.  DIELECTRIC PROPERTIES OF APPLE CULTIVARS AND CODLING MOTH LARVAE , 2000 .

[30]  Lisa G. Neven,et al.  Comparison of alternative postharvest quarantine treatments for sweet cherries , 2000 .

[31]  M. Lay-Yee,et al.  Response of 'Royal Gala' apples to hot water treatment for insect control , 2000 .

[32]  Shaojin Wang,et al.  High-temperature-short-time thermal quarantine methods , 2000 .