A clustering approach to interpretable principal components
暂无分享,去创建一个
[1] I. Jolliffe,et al. A Modified Principal Component Technique Based on the LASSO , 2003 .
[2] I. Jolliffe. Discarding Variables in a Principal Component Analysis. Ii: Real Data , 1973 .
[3] R. Tibshirani,et al. Sparse Principal Component Analysis , 2006 .
[4] H. Chipman,et al. Interpretable dimension reduction , 2005 .
[5] Maurizio Vichi,et al. Clustering and disjoint principal component analysis , 2009, Comput. Stat. Data Anal..
[6] Ka Yee Yeung,et al. Principal component analysis for clustering gene expression data , 2001, Bioinform..
[7] Shai Avidan,et al. Spectral Bounds for Sparse PCA: Exact and Greedy Algorithms , 2005, NIPS.
[8] Michael I. Jordan,et al. A Direct Formulation for Sparse Pca Using Semidefinite Programming , 2004, SIAM Rev..
[9] Alan Julian Izenman,et al. Modern Multivariate Statistical Techniques , 2008 .
[10] Ash A. Alizadeh,et al. 'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.
[11] Heng Tao Shen,et al. Principal Component Analysis , 2009, Encyclopedia of Biometrics.
[12] Ian T. Jolliffe,et al. Discarding Variables in a Principal Component Analysis. I: Artificial Data , 1972 .
[13] Ian T. Jolliffe,et al. Variable selection and the interpretation of principal subspaces , 2001 .
[14] Theo Gasser,et al. Simple component analysis , 2004 .
[15] E. Vigneau,et al. Clustering of Variables Around Latent Components , 2003 .
[16] Jorge Cadima Departamento de Matematica. Loading and correlations in the interpretation of principle compenents , 1995 .
[17] J. N. R. Jeffers,et al. Two Case Studies in the Application of Principal Component Analysis , 1967 .