pySecDec: A toolbox for the numerical evaluation of multi-scale integrals

We present a new version of SECDEC, a program for the numerical computation of parametric integrals in the context of dimensional regularization. By its modular structure, the python rewrite pySECDEC is much more customizable than earlier versions of SECDEC. The numerical integration is accelerated using code optimization available in FORM. With the new C++ interface, pySECDEC can provide numerical solutions of analytically unknown integrals in user-defined code.

[1]  Takahiro Ueda,et al.  Code optimization in FORM , 2013, Comput. Phys. Commun..

[2]  D. Maitre,et al.  Master integrals for fermionic contributions to massless three-loop form-factors , 2007, 0711.3590.

[3]  Gudrun Heinrich,et al.  Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..

[4]  Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.

[5]  Christian Bogner,et al.  Operating system: Unix , 1983 .

[6]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[7]  Patricia M. Hinkley,et al.  30 years on ... , 1979, Michigan hospitals.

[8]  Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.

[9]  T. Zirke,et al.  Calculation of Multi-Loop Integrals with SecDec-3.0 , 2016, 1601.03982.

[10]  M.Yu. Kalmykov,et al.  Massive Feynman diagrams and inverse binomial sums , 2004 .

[11]  J. Henn Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.

[12]  T. Riemann,et al.  Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.

[13]  Junpei Fujimoto,et al.  New implementation of the sector decomposition on FORM , 2009, 0902.2656.

[14]  S. Borowka,et al.  Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.

[15]  R. Schabinger,et al.  A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.

[16]  Bogdan Ichim,et al.  The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..

[17]  A. V. Smirnov,et al.  Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..

[18]  A. V. Smirnov,et al.  FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..

[19]  D. Soper Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.

[20]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[21]  T. Binoth,et al.  An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .

[22]  A. Kotikov Differential equation method: The Calculation of N point Feynman diagrams , 1991 .

[23]  Brendan D. McKay,et al.  Practical graph isomorphism, II , 2013, J. Symb. Comput..

[24]  J. Schlenk Techniques for higher order corrections and their application to LHC phenomenology , 2016 .

[25]  Klaus Hepp,et al.  Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .

[26]  E. Panzer On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.

[27]  Takahiro Ueda,et al.  Sector decomposition via computational geometry , 2010 .

[28]  Gudrun Heinrich,et al.  Sector Decomposition , 2008, 0803.4177.

[29]  Stefan Beerli A new method for evaluating two-loop Feynman integrals and its application to Higgs production , 2008 .

[30]  Charalampos Anastasiou,et al.  Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .

[31]  G. Passarino,et al.  Two-Loop Vertices in Quantum Field Theory: Infrared Convergent Scalar Configurations , 2003, hep-ph/0311186.

[32]  A. Smirnov,et al.  FIESTA4: Optimized Feynman integral calculations with GPU support , 2015, Comput. Phys. Commun..

[33]  Thomas Hahn,et al.  Concurrent Cuba , 2014, Comput. Phys. Commun..

[34]  C. Schubert,et al.  An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .

[35]  A. Denner,et al.  High-Energy Approximation of One-Loop Feynman Integrals , 1996 .

[36]  R. Bonciani,et al.  Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.

[37]  Thomas Hahn Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..

[38]  Gudrun Heinrich,et al.  pySecDec: A toolbox for the numerical evaluation of multi-scale integrals , 2017, Comput. Phys. Commun..

[39]  Gudrun Heinrich,et al.  SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..

[40]  Tobias Huber,et al.  HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2006, Comput. Phys. Commun..

[41]  A. V. Smirnov,et al.  FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..

[42]  R. Schabinger,et al.  Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.

[43]  Takahiro Ueda,et al.  A geometric method of sector decomposition , 2009, Comput. Phys. Commun..

[44]  L. Tancredi,et al.  On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.

[45]  J. Fleischer,et al.  Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1999 .

[46]  S. Borowka,et al.  Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .

[47]  Gudrun Heinrich,et al.  SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop , 2015, Comput. Phys. Commun..

[48]  Alexey Pak,et al.  The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques , 2011, 1111.0868.