pySecDec: A toolbox for the numerical evaluation of multi-scale integrals
暂无分享,去创建一个
Stephan Jahn | S. Jahn | S. Borowka | T. Zirke | G. Heinrich | S. Jones | M. Kerner | J. Schlenk
[1] Takahiro Ueda,et al. Code optimization in FORM , 2013, Comput. Phys. Commun..
[2] D. Maitre,et al. Master integrals for fermionic contributions to massless three-loop form-factors , 2007, 0711.3590.
[3] Gudrun Heinrich,et al. Numerical evaluation of multi-loop integrals for arbitrary kinematics with SecDec 2.0 , 2012, Comput. Phys. Commun..
[4] Master Integrals for the 2-loop QCD virtual corrections to the Forward-Backward Asymmetry , 2003, hep-ph/0311145.
[5] Christian Bogner,et al. Operating system: Unix , 1983 .
[6] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[7] Patricia M. Hinkley,et al. 30 years on ... , 1979, Michigan hospitals.
[8] Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[9] T. Zirke,et al. Calculation of Multi-Loop Integrals with SecDec-3.0 , 2016, 1601.03982.
[10] M.Yu. Kalmykov,et al. Massive Feynman diagrams and inverse binomial sums , 2004 .
[11] J. Henn. Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.
[12] T. Riemann,et al. Numerical evaluation of tensor Feynman integrals in Euclidean kinematics , 2010, 1010.1667.
[13] Junpei Fujimoto,et al. New implementation of the sector decomposition on FORM , 2009, 0902.2656.
[14] S. Borowka,et al. Higgs Boson Pair Production in Gluon Fusion at Next-to-Leading Order with Full Top-Quark Mass Dependence. , 2016, Physical review letters.
[15] R. Schabinger,et al. A quasi-finite basis for multi-loop Feynman integrals , 2014, 1411.7392.
[16] Bogdan Ichim,et al. The power of pyramid decomposition in Normaliz , 2012, J. Symb. Comput..
[17] A. V. Smirnov,et al. Feynman Integral Evaluation by a Sector decomposiTion Approach (FIESTA) , 2008, Comput. Phys. Commun..
[18] A. V. Smirnov,et al. FIESTA 3: Cluster-parallelizable multiloop numerical calculations in physical regions , 2013, Comput. Phys. Commun..
[19] D. Soper. Techniques for QCD calculations by numerical integration , 1999, hep-ph/9910292.
[20] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[21] T. Binoth,et al. An automatized algorithm to compute infrared divergent multi-loop integrals , 2000 .
[22] A. Kotikov. Differential equation method: The Calculation of N point Feynman diagrams , 1991 .
[23] Brendan D. McKay,et al. Practical graph isomorphism, II , 2013, J. Symb. Comput..
[24] J. Schlenk. Techniques for higher order corrections and their application to LHC phenomenology , 2016 .
[25] Klaus Hepp,et al. Proof of the Bogoliubov-Parasiuk theorem on renormalization , 1966 .
[26] E. Panzer. On hyperlogarithms and Feynman integrals with divergences and many scales , 2014, 1401.4361.
[27] Takahiro Ueda,et al. Sector decomposition via computational geometry , 2010 .
[28] Gudrun Heinrich,et al. Sector Decomposition , 2008, 0803.4177.
[29] Stefan Beerli. A new method for evaluating two-loop Feynman integrals and its application to Higgs production , 2008 .
[30] Charalampos Anastasiou,et al. Evaluating multi-loop Feynman diagrams with infrared and threshold singularities numerically , 2007 .
[31] G. Passarino,et al. Two-Loop Vertices in Quantum Field Theory: Infrared Convergent Scalar Configurations , 2003, hep-ph/0311186.
[32] A. Smirnov,et al. FIESTA4: Optimized Feynman integral calculations with GPU support , 2015, Comput. Phys. Commun..
[33] Thomas Hahn,et al. Concurrent Cuba , 2014, Comput. Phys. Commun..
[34] C. Schubert,et al. An algebraic/numerical formalism for one-loop multi-leg amplitudes , 2005 .
[35] A. Denner,et al. High-Energy Approximation of One-Loop Feynman Integrals , 1996 .
[36] R. Bonciani,et al. Two-loop planar master integrals for Higgs → 3 partons with full heavy-quark mass dependence , 2016, 1609.06685.
[37] Thomas Hahn. Cuba - a library for multidimensional numerical integration , 2007, Comput. Phys. Commun..
[38] Gudrun Heinrich,et al. pySecDec: A toolbox for the numerical evaluation of multi-scale integrals , 2017, Comput. Phys. Commun..
[39] Gudrun Heinrich,et al. SecDec: A general program for sector decomposition , 2010, Comput. Phys. Commun..
[40] Tobias Huber,et al. HypExp, a Mathematica package for expanding hypergeometric functions around integer-valued parameters , 2006, Comput. Phys. Commun..
[41] A. V. Smirnov,et al. FIESTA 2: Parallelizeable multiloop numerical calculations , 2009, Comput. Phys. Commun..
[42] R. Schabinger,et al. Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.
[43] Takahiro Ueda,et al. A geometric method of sector decomposition , 2009, Comput. Phys. Commun..
[44] L. Tancredi,et al. On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.
[45] J. Fleischer,et al. Analytic two-loop results for self-energy- and vertex-type diagrams with one non-zero mass , 1999 .
[46] S. Borowka,et al. Full top quark mass dependence in Higgs boson pair production at NLO , 2016 .
[47] Gudrun Heinrich,et al. SecDec-3.0: Numerical evaluation of multi-scale integrals beyond one loop , 2015, Comput. Phys. Commun..
[48] Alexey Pak,et al. The toolbox of modern multi-loop calculations: novel analytic and semi-analytic techniques , 2011, 1111.0868.