Pairings on hyperelliptic curves
暂无分享,去创建一个
Kirsten Eisenträger | Katherine E. Stange | Edlyn Teske | Jennifer S. Balakrishnan | Sarah Chisholm | Jennifer Balakrishnan | Juliana Belding | Edlyn Teske | Kirsten Eisenträger | Sarah Chisholm | Juliana Belding
[1] Kristin Lauter. THE EQUIVALENCE OF THE GEOMETRIC AND ALGEBRAIC GROUP LAWS FOR JACOBIANS OF GENUS 2 CURVES , 2001 .
[2] Jiwu Huang,et al. A note on the Ate pairing , 2008, International Journal of Information Security.
[3] Steven D. Galbraith,et al. Supersingular Curves in Cryptography , 2001, ASIACRYPT.
[4] Steven D. Galbraith,et al. Pairings on Hyperelliptic Curves with a Real Model , 2008, Pairing.
[5] Paulo S. L. M. Barreto,et al. On Compressible Pairings and Their Computation , 2008, AFRICACRYPT.
[6] Alfred Menezes,et al. Pairing-Based Cryptography at High Security Levels , 2005, IMACC.
[7] Yoonjin Lee,et al. Eta pairing computation on general divisors over hyperelliptic curves y , 2007, J. Symb. Comput..
[8] Florian Hess,et al. Pairing Lattices , 2008, Pairing.
[9] G. Frey. Applications of Arithmetical Geometry to Cryptographic Constructions , 2001 .
[10] Mitsuru Kawazoe,et al. Pairing-friendly Hyperelliptic Curves of Type y 2 = x 5 + ax , 2008 .
[11] Frederik Vercauteren,et al. Ate Pairing on Hyperelliptic Curves , 2007, EUROCRYPT.
[12] Michael Scott,et al. Pairing Calculation on Supersingular Genus 2 Curves , 2006, Selected Areas in Cryptography.
[13] M. Scott. Implementing cryptographic pairings , 2007 .
[14] Jiwu Huang,et al. All Pairings Are in a Group , 2008, IEICE Trans. Fundam. Electron. Commun. Comput. Sci..
[15] David Mandell Freeman,et al. A Generalized Brezing-Weng Algorithm for Constructing Pairing-Friendly Ordinary Abelian Varieties , 2008, Pairing.
[16] Iwan M. Duursma,et al. Tate Pairing Implementation for Hyperelliptic Curves y2 = xp-x + d , 2003, ASIACRYPT.
[17] Eunjeong Lee,et al. TATE PAIRING COMPUTATION ON THE DIVISORS OF HYPERELLIPTIC CURVES OF GENUS 2 , 2008 .
[18] K. Paterson. Advances in Elliptic Curve Cryptography: Cryptography from Pairings , 2005 .
[19] Frederik Vercauteren,et al. Optimal Pairings , 2010, IEEE Transactions on Information Theory.
[20] Martijn Stam,et al. On Small Characteristic Algebraic Tori in Pairing-Based Cryptography , 2004, IACR Cryptol. ePrint Arch..
[21] Takakazu Satoh,et al. Constructing pairing-friendly hyperelliptic curves using Weil restriction , 2011, IACR Cryptol. ePrint Arch..
[22] Emanuele Cesena. Pairing with Supersingular Trace Zero Varieties Revisited , 2008, IACR Cryptol. ePrint Arch..
[23] Hyang-Sook Lee,et al. Efficient and Generalized Pairing Computation on Abelian Varieties , 2009, IEEE Transactions on Information Theory.
[24] Michael Scott,et al. Exponentiation in Pairing-Friendly Groups Using Homomorphisms , 2008, Pairing.
[25] David Jao,et al. Speeding Up Pairing Computations on Genus 2 Hyperelliptic Curves with Efficiently Computable Automorphisms , 2008, Pairing.
[26] R. Balasubramanian,et al. The Improbability That an Elliptic Curve Has Subexponential Discrete Log Problem under the Menezes—Okamoto—Vanstone Algorithm , 1998, Journal of Cryptology.
[27] David Mandell Freeman,et al. Constructing Pairing-Friendly Genus 2 Curves with Ordinary Jacobians , 2007, Pairing.
[28] Gabriel Cardona. On the number of curves of genus 2 over a finite field , 2003 .
[29] Matthew K. Franklin,et al. Identity-Based Encryption from the Weil Pairing , 2001, CRYPTO.
[30] Tatsuaki Okamoto,et al. Homomorphic Encryption and Signatures from Vector Decomposition , 2008, Pairing.
[31] Alice Silverberg,et al. Supersingular Abelian Varieties in Cryptology , 2002, CRYPTO.
[32] D. Cantor. Computing in the Jacobian of a hyperelliptic curve , 1987 .
[33] Arjen K. Lenstra,et al. Unbelievable Security. Matching AES Security Using Public Key Systems , 2001, ASIACRYPT.
[34] Don Coppersmith,et al. Fast evaluation of logarithms in fields of characteristic two , 1984, IEEE Trans. Inf. Theory.
[35] Andrew M. Odlyzko,et al. Discrete Logarithms in Finite Fields and Their Cryptographic Significance , 1985, EUROCRYPT.
[36] Igor E. Shparlinski,et al. MOV attack in various subgroups on elliptic curves , 2004 .
[37] Gabriel Cardona,et al. Curves of genus two over fields of even characteristic , 2002 .
[38] Nigel P. Smart,et al. High Security Pairing-Based Cryptography Revisited , 2006, ANTS.
[39] Joseph H. Silverman,et al. The arithmetic of elliptic curves , 1986, Graduate texts in mathematics.
[40] Christof Paar,et al. Cantor versus Harley: optimization and analysis of explicit formulae for hyperelliptic curve cryptosystems , 2005, IEEE Transactions on Computers.
[41] Fangguo Zhang. Twisted Ate pairing on hyperelliptic curves and applications , 2010, Science China Information Sciences.
[42] Paulo S. L. M. Barreto,et al. Efficient pairing computation on supersingular Abelian varieties , 2007, IACR Cryptol. ePrint Arch..
[43] Steven D. Galbraith,et al. Computing pairings using x-coordinates only , 2009, Des. Codes Cryptogr..
[44] YoungJu Choie,et al. Implementation of Tate Pairing on Hyperelliptic Curves of Genus 2 , 2003, ICISC.
[45] Laura Hitt. On the Minimal Embedding Field , 2007, Pairing.
[46] J. Pollard,et al. Monte Carlo methods for index computation () , 1978 .
[47] Nicolas Thériault,et al. A double large prime variation for small genus hyperelliptic index calculus , 2004, Math. Comput..
[48] David Mandell Freeman,et al. Abelian varieties with prescribed embedding degree , 2008, IACR Cryptol. ePrint Arch..
[49] Annegret Weng,et al. Constructing hyperelliptic curves of genus 2 suitable for cryptography , 2003, Math. Comput..
[50] Frederik Vercauteren,et al. Hyperelliptic Pairings , 2007, Pairing.
[51] D. Mumford. Tata Lectures on Theta I , 1982 .
[52] Tanja Lange,et al. Handbook of Elliptic and Hyperelliptic Curve Cryptography , 2005 .
[53] Tsuyoshi Takagi,et al. Novel Efficient Implementations of Hyperelliptic Curve Cryptosystems Using Degenerate Divisors , 2004, WISA.
[54] Hovav Shacham,et al. Short Signatures from the Weil Pairing , 2001, J. Cryptol..
[55] Paul C. van Oorschot,et al. Parallel Collision Search with Cryptanalytic Applications , 2013, Journal of Cryptology.
[56] 晋輝 趙,et al. H. Cohen, G. Frey, R. Avanzi, C. Doche, T. Lange, K. Nguyen and F. Vercauteren (eds.): Handbook of Elliptic and Hyperelliptic Curve Cryptography, Discrete Math. Appl. (Boca Raton)., Chapman & Hall/CRC, 2006年,xxxiv + 808ページ. , 2009 .
[57] Antoine Joux,et al. A One Round Protocol for Tripartite Diffie–Hellman , 2000, Journal of Cryptology.
[58] Victor S. Miller,et al. The Weil Pairing, and Its Efficient Calculation , 2004, Journal of Cryptology.
[59] Michael Scott,et al. A Taxonomy of Pairing-Friendly Elliptic Curves , 2010, Journal of Cryptology.
[60] Steven D. Galbraith,et al. Ordinary abelian varieties having small embedding degree , 2007, Finite Fields Their Appl..
[61] William E. Burr,et al. Recommendation for Key Management, Part 1: General (Revision 3) , 2006 .
[62] 이윤진,et al. Eta pairing computation on general divisors over hyperelliptic curves y2 = xp - x + d , 2008 .
[63] Ian F. Blake,et al. Advances in Elliptic Curve Cryptography: Frontmatter , 2005 .
[64] Steven D. Galbraith,et al. Distortion maps for genus two curves , 2006, IACR Cryptol. ePrint Arch..
[65] David Thomas,et al. The Art in Computer Programming , 2001 .
[66] Tanja Lange,et al. Formulae for Arithmetic on Genus 2 Hyperelliptic Curves , 2005, Applicable Algebra in Engineering, Communication and Computing.
[67] Neal Koblitz,et al. Hyperelliptic cryptosystems , 1989, Journal of Cryptology.
[68] Tanja Lange,et al. Fast Bilinear Maps from the Tate-Lichtenbaum Pairing on Hyperelliptic Curves , 2006, ANTS.
[69] Annegret Weng,et al. Elliptic Curves Suitable for Pairing Based Cryptography , 2005, Des. Codes Cryptogr..
[70] Frederik Vercauteren,et al. The Eta Pairing Revisited , 2006, IEEE Transactions on Information Theory.
[71] Kristin E. Lauter,et al. Improved Weil and Tate Pairings for Elliptic and Hyperelliptic Curves , 2004, ANTS.