Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations
暂无分享,去创建一个
[1] J. Varah. Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .
[2] J. Verwer,et al. Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .
[3] Xiaohong Zhu,et al. Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..
[4] Willem Hundsdorfer,et al. On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..
[5] Béatrice Rivière,et al. Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .
[6] Jeffrey M. Connors,et al. Partitioned time discretization for parallel solution of coupled ODE systems , 2011 .
[7] Jan Verwer. Component splitting for semi-discrete Maxwell equations , 2011 .
[8] T. Arbogast,et al. Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .
[9] J. Galvis,et al. NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .
[10] Max Gunzburger,et al. Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system☆ , 2010 .
[11] Jeffrey M. Connors,et al. A fluid‐fluid interaction method using decoupled subproblems and differing time steps , 2012 .
[12] Willem Hundsdorfer,et al. Stability of implicit-explicit linear multistep methods , 1997 .
[13] Béatrice Rivière,et al. Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow , 2008, J. Num. Math..
[14] Fabio Nobile,et al. Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .
[15] Wenbin Chen,et al. A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..
[16] Jinchao Xu,et al. Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..
[17] P. Hansbo,et al. Stabilized Crouzeix‐Raviart element for the Darcy‐Stokes problem , 2005 .
[18] M. Amara,et al. Coupling of Darcy--Forchheimer and Compressible Navier--Stokes Equations with Heat Transfer , 2008, SIAM J. Sci. Comput..
[19] Jinchao Xu,et al. A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..
[20] Alfio Quarteroni,et al. Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..
[21] Béatrice Rivière,et al. Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..
[22] Xiaoping,et al. UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .
[23] Jinchao Xu,et al. Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications , 2009, J. Comput. Appl. Math..
[24] P. Hansbo,et al. A unified stabilized method for Stokes' and Darcy's equations , 2007 .
[25] S. J. Thomas,et al. The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation , 2005 .
[26] Weidong Zhao,et al. Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .
[27] Erik Burman,et al. Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem , 2008 .
[28] André Garon,et al. Coupling Stokes and Darcy equations , 2008 .
[29] W. Layton,et al. Decoupled scheme with different time step sizes for the evolutionary Stokes-Darcy model , 2011 .
[30] Xiaoping,et al. LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS , 2009 .
[31] H. Kreiss,et al. Über das Verfahren der zentralen Differenzen zur Lösung des Cauchyproblems für partielle Differentialgleichungen , 1963 .
[32] Steven J. Ruuth,et al. Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .
[33] Todd Arbogast,et al. A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .
[34] Charalambos Makridakis,et al. Implicit-explicit multistep finite element methods for nonlinear parabolic problems , 1998, Math. Comput..
[35] J. G. Verwer,et al. Convergence and component splitting for the Crank-Nicolson--Leap-Frog integration method , 2009 .
[36] Xiaoming He,et al. Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.
[37] Erik Burman,et al. Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .
[38] Georgios Akrivis,et al. Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation , 2004 .
[39] T. Arbogast,et al. A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .
[40] A. Quarteroni,et al. Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations , 2004 .
[41] Willem Hundsdorfer,et al. IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..
[42] Steven J. Ruuth,et al. Implicit-explicit methods for time-dependent partial differential equations , 1995 .
[43] Fei Hua,et al. Modeling, analysis and simulation of the Stokes -Darcy system with Beavers -Joseph interface condition , 2009 .
[44] Ivan Yotov,et al. Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..
[45] VIVETTE GIRAULT,et al. DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..
[46] M. Gunzburger,et al. Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .
[47] Willem Hundsdorfer,et al. High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .
[48] Erik Burman,et al. Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .
[49] Alvaro L. G. A. Coutinho,et al. On decoupled time step/subcycling and iteration strategies for multiphysics problems , 2008 .
[50] Michel Crouzeix,et al. Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .
[51] Xue-Cheng Tai,et al. A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..
[52] William J. Layton,et al. Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..
[53] Mihai Anitescu,et al. IMPLICIT FOR LOCAL EFFECTS AND EXPLICIT FOR NONLOCAL EFFECTS IS UNCONDITIONALLY STABLE , 2004 .
[54] Bin Jiang. A parallel domain decomposition method for coupling of surface and groundwater flows , 2009 .
[55] E. Miglio,et al. Mathematical and numerical models for coupling surface and groundwater flows , 2002 .
[56] Charalambos Makridakis,et al. Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.
[57] Guan Qin,et al. Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs , 2009 .