Stability of two IMEX methods, CNLF and BDF2-AB2, for uncoupling systems of evolution equations

Stability is proven for two second order, two step methods for uncoupling a system of two evolution equations with exactly skew symmetric coupling: the Crank-Nicolson Leap-Frog (CNLF) combination and the BDF2-AB2 combination. The form of the coupling studied arises in spatial discretizations of the Stokes-Darcy problem. For CNLF we prove stability for the coupled system under the time step condition suggested by linear stability theory for the Leap-Frog scheme. This seems to be a first proof of a widely believed result. For BDF2-AB2 we prove stability under a condition that is better than the one suggested by linear stability theory for the individual methods.

[1]  J. Varah Stability Restrictions on Second Order, Three Level Finite Difference Schemes for Parabolic Equations , 1978 .

[2]  J. Verwer,et al.  Numerical solution of time-dependent advection-diffusion-reaction equations , 2003 .

[3]  Xiaohong Zhu,et al.  Decoupled schemes for a non-stationary mixed Stokes-Darcy model , 2009, Math. Comput..

[4]  Willem Hundsdorfer,et al.  On monotonicity and boundedness properties of linear multistep methods , 2006, Math. Comput..

[5]  Béatrice Rivière,et al.  Locally Conservative Coupling of Stokes and Darcy Flows , 2005 .

[6]  Jeffrey M. Connors,et al.  Partitioned time discretization for parallel solution of coupled ODE systems , 2011 .

[7]  Jan Verwer Component splitting for semi-discrete Maxwell equations , 2011 .

[8]  T. Arbogast,et al.  Homogenization of a Darcy–Stokes system modeling vuggy porous media , 2006 .

[9]  J. Galvis,et al.  NON-MATCHING MORTAR DISCRETIZATION ANALYSIS FOR THE COUPLING STOKES-DARCY EQUATIONS , 2007 .

[10]  Max Gunzburger,et al.  Asymptotic analysis of the differences between the Stokes–Darcy system with different interface conditions and the Stokes–Brinkman system☆ , 2010 .

[11]  Jeffrey M. Connors,et al.  A fluid‐fluid interaction method using decoupled subproblems and differing time steps , 2012 .

[12]  Willem Hundsdorfer,et al.  Stability of implicit-explicit linear multistep methods , 1997 .

[13]  Béatrice Rivière,et al.  Analysis of time-dependent Navier–Stokes flow coupled with Darcy flow , 2008, J. Num. Math..

[14]  Fabio Nobile,et al.  Added-mass effect in the design of partitioned algorithms for fluid-structure problems , 2005 .

[15]  Wenbin Chen,et al.  A Parallel Robin-Robin Domain Decomposition Method for the Stokes-Darcy System , 2011, SIAM J. Numer. Anal..

[16]  Jinchao Xu,et al.  Numerical Solution to a Mixed Navier-Stokes/Darcy Model by the Two-Grid Approach , 2009, SIAM J. Numer. Anal..

[17]  P. Hansbo,et al.  Stabilized Crouzeix‐Raviart element for the Darcy‐Stokes problem , 2005 .

[18]  M. Amara,et al.  Coupling of Darcy--Forchheimer and Compressible Navier--Stokes Equations with Heat Transfer , 2008, SIAM J. Sci. Comput..

[19]  Jinchao Xu,et al.  A Two-Grid Method of a Mixed Stokes-Darcy Model for Coupling Fluid Flow with Porous Media Flow , 2007, SIAM J. Numer. Anal..

[20]  Alfio Quarteroni,et al.  Robin-Robin Domain Decomposition Methods for the Stokes-Darcy Coupling , 2007, SIAM J. Numer. Anal..

[21]  Béatrice Rivière,et al.  Analysis of a Discontinuous Finite Element Method for the Coupled Stokes and Darcy Problems , 2005, J. Sci. Comput..

[22]  Xiaoping,et al.  UNIFORMLY-STABLE FINITE ELEMENT METHODS FOR DARCY-STOKES-BRINKMAN MODELS , 2008 .

[23]  Jinchao Xu,et al.  Preconditioning techniques for a mixed Stokes/Darcy model in porous media applications , 2009, J. Comput. Appl. Math..

[24]  P. Hansbo,et al.  A unified stabilized method for Stokes' and Darcy's equations , 2007 .

[25]  S. J. Thomas,et al.  The NCAR spectral element climate dynamical core: Semi-implicit eulerian formulation , 2005 .

[26]  Weidong Zhao,et al.  Finite Element Approximations for Stokes–darcy Flow with Beavers–joseph Interface Conditions * , 2022 .

[27]  Erik Burman,et al.  Pressure projection stabilizations for Galerkin approximations of Stokes' and Darcy's problem , 2008 .

[28]  André Garon,et al.  Coupling Stokes and Darcy equations , 2008 .

[29]  W. Layton,et al.  Decoupled scheme with different time step sizes for the evolutionary Stokes-Darcy model , 2011 .

[30]  Xiaoping,et al.  LOW ORDER NONCONFORMING RECTANGULAR FINITE ELEMENT METHODS FOR DARCY-STOKES PROBLEMS , 2009 .

[31]  H. Kreiss,et al.  Über das Verfahren der zentralen Differenzen zur Lösung des Cauchyproblems für partielle Differentialgleichungen , 1963 .

[32]  Steven J. Ruuth,et al.  Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations , 1997 .

[33]  Todd Arbogast,et al.  A discretization and multigrid solver for a Darcy–Stokes system of three dimensional vuggy porous media , 2009 .

[34]  Charalambos Makridakis,et al.  Implicit-explicit multistep finite element methods for nonlinear parabolic problems , 1998, Math. Comput..

[35]  J. G. Verwer,et al.  Convergence and component splitting for the Crank-Nicolson--Leap-Frog integration method , 2009 .

[36]  Xiaoming He,et al.  Robin–Robin domain decomposition methods for the steady-state Stokes–Darcy system with the Beavers–Joseph interface condition , 2011, Numerische Mathematik.

[37]  Erik Burman,et al.  Stabilization of explicit coupling in fluid-structure interaction involving fluid incompressibility , 2009 .

[38]  Georgios Akrivis,et al.  Implicit-explicit BDF methods for the Kuramoto-Sivashinsky equation , 2004 .

[39]  T. Arbogast,et al.  A computational method for approximating a Darcy–Stokes system governing a vuggy porous medium , 2007 .

[40]  A. Quarteroni,et al.  Convergence analysis of a subdomain iterative method for the finite element approximation of the coupling of Stokes and Darcy equations , 2004 .

[41]  Willem Hundsdorfer,et al.  IMEX extensions of linear multistep methods with general monotonicity and boundedness properties , 2007, J. Comput. Phys..

[42]  Steven J. Ruuth,et al.  Implicit-explicit methods for time-dependent partial differential equations , 1995 .

[43]  Fei Hua,et al.  Modeling, analysis and simulation of the Stokes -Darcy system with Beavers -Joseph interface condition , 2009 .

[44]  Ivan Yotov,et al.  Coupling Fluid Flow with Porous Media Flow , 2002, SIAM J. Numer. Anal..

[45]  VIVETTE GIRAULT,et al.  DG Approximation of Coupled Navier-Stokes and Darcy Equations by Beaver-Joseph-Saffman Interface Condition , 2009, SIAM J. Numer. Anal..

[46]  M. Gunzburger,et al.  Coupled Stokes-Darcy model with Beavers-Joseph interface boundary condition , 2010 .

[47]  Willem Hundsdorfer,et al.  High-order linear multistep methods with general monotonicity and boundedness properties , 2005 .

[48]  Erik Burman,et al.  Stabilized explicit coupling for fluid-structure interaction using Nitsche s method , 2007 .

[49]  Alvaro L. G. A. Coutinho,et al.  On decoupled time step/subcycling and iteration strategies for multiphysics problems , 2008 .

[50]  Michel Crouzeix,et al.  Une méthode multipas implicite-explicite pour l'approximation des équations d'évolution paraboliques , 1980 .

[51]  Xue-Cheng Tai,et al.  A Robust Finite Element Method for Darcy-Stokes Flow , 2002, SIAM J. Numer. Anal..

[52]  William J. Layton,et al.  Decoupled Time Stepping Methods for Fluid-Fluid Interaction , 2012, SIAM J. Numer. Anal..

[53]  Mihai Anitescu,et al.  IMPLICIT FOR LOCAL EFFECTS AND EXPLICIT FOR NONLOCAL EFFECTS IS UNCONDITIONALLY STABLE , 2004 .

[54]  Bin Jiang A parallel domain decomposition method for coupling of surface and groundwater flows , 2009 .

[55]  E. Miglio,et al.  Mathematical and numerical models for coupling surface and groundwater flows , 2002 .

[56]  Charalambos Makridakis,et al.  Implicit-explicit multistep methods for quasilinear parabolic equations , 1999, Numerische Mathematik.

[57]  Guan Qin,et al.  Multiscale Modeling and Simulations of Flows in Naturally Fractured Karst Reservoirs , 2009 .