The 1-2-3 Conjecture and related problems: a survey

The 1-2-3 Conjecture, posed in 2004 by Karonski, Luczak, and Thomason, is as follows: "If G is a graph with no connected component having exactly 2 vertices, then the edges of G may be assigned weights from the set {1,2,3} so that, for any adjacent vertices u and v, the sum of weights of edges incident to u differs from the sum of weights of edges incident to v." This survey paper presents the current state of research on the 1-2-3 Conjecture and the many variants that have been proposed in its short but active history.

[1]  Michael Stiebitz,et al.  Edge colouring by total labellings , 2010, Discret. Math..

[2]  GUANGHUI WANG,et al.  Neighbor Sum Distinguishing Coloring of some Graphs , 2012, Discret. Math. Algorithms Appl..

[3]  Carsten Thomassen,et al.  Every Planar Graph Is 5-Choosable , 1994, J. Comb. Theory B.

[4]  S. Stahl n-Tuple colorings and associated graphs , 1976 .

[5]  Jakub Przybylo,et al.  On a 1, 2 Conjecture , 2010, Discret. Math. Theor. Comput. Sci..

[6]  Norma Zagaglia Salvi A note on the line-distinguishing chromatic number and the chromatic index of a graph , 1993, J. Graph Theory.

[7]  Hamed Hatami,et al.  Delta+300 is a bound on the adjacent vertex distinguishing edge chromatic number , 2005, J. Comb. Theory, Ser. B.

[8]  Jakub Przybylo A Note on Neighbour-Distinguishing Regular Graphs Total-Weighting , 2008, Electron. J. Comb..

[9]  Bruce A. Reed,et al.  Vertex-Colouring Edge-Weightings , 2007, Comb..

[10]  Noga Alon Combinatorial Nullstellensatz , 1999, Combinatorics, Probability and Computing.

[11]  Joseph A. Gallian,et al.  A Dynamic Survey of Graph Labeling , 2009, The Electronic Journal of Combinatorics.

[12]  Xuding Zhu,et al.  List Total Weighting of Graphs , 2010 .

[13]  Tomasz Bartnicki,et al.  The n-ordered graphs: A new graph class , 2009 .

[14]  Qinglin Yu,et al.  Vertex-coloring Edge-weightings of Graphs , 2011 .

[15]  Andrzej Dudek,et al.  On the complexity of vertex-coloring edge-weightings , 2011, Discret. Math. Theor. Comput. Sci..

[16]  Gary Chartrand,et al.  The Sigma Chromatic Number of a Graph , 2010, Graphs Comb..

[17]  Bruce A. Reed,et al.  Degree constrained subgraphs , 2005, Electron. Notes Discret. Math..

[18]  Saieed Akbari,et al.  List coloring of graphs having cycles of length divisible by a given number , 2009, Discret. Math..

[19]  Tom Coker,et al.  The adjacent vertex distinguishing total chromatic number , 2010, Discret. Math..

[20]  Daqing Yang,et al.  On total weight choosability of graphs , 2013, J. Comb. Optim..

[21]  Roman Soták,et al.  Vertex-distinguishing proper edge colourings of some regular graphs , 2008, Discret. Math..

[22]  Dieter Rautenbach,et al.  Edge irregular total labellings for graphs of linear size , 2009, Discret. Math..

[23]  Eberhard Triesch,et al.  Irregular Assignments of Trees and Forests , 1990, SIAM J. Discret. Math..

[24]  Xuding Zhu,et al.  Total weight choosability of Cartesian product of graphs , 2012, Eur. J. Comb..

[25]  Brett Stevens,et al.  Sequence variations of the 1-2-3 Conjecture and irregularity strength , 2012, Discret. Math. Theor. Comput. Sci..

[26]  Joanna Skowronek-Kaziów 1, 2 Conjecture - the multiplicative version , 2008, Inf. Process. Lett..

[27]  V. G. Vizing SOME UNSOLVED PROBLEMS IN GRAPH THEORY , 1968 .

[28]  B. Yao,et al.  On adjacent-vertex-distinguishing total coloring of graphs , 2005 .

[29]  Noga Alon,et al.  Colorings and orientations of graphs , 1992, Comb..

[30]  Mirko Hornák,et al.  On neighbour-distinguishing colourings from lists , 2006, Discret. Math. Theor. Comput. Sci..

[31]  Neighbor-distinguishing vertex colorings of graphs , 2010 .

[32]  Brett Stevens,et al.  Digraphs are 2-Weight Choosable , 2011, Electron. J. Comb..

[33]  Frédéric Havet,et al.  Detection number of bipartite graphs and cubic graphs , 2014, Discret. Math. Theor. Comput. Sci..

[34]  Zsolt Tuza,et al.  Irregular assignments and vertex-distinguishing edge-colorings of graphs , 1990 .

[35]  Jaroslaw Grytczuk,et al.  Lucky labelings of graphs , 2009, Inf. Process. Lett..

[36]  Stanislav Jendrol',et al.  On irregular total labellings , 2007, Discret. Math..

[37]  Qinglin Yu,et al.  Vertex-coloring 2-edge-weighting of graphs , 2010, Eur. J. Comb..

[38]  Tommy R. Jensen,et al.  Wiley‐Interscience Series in Discrete Mathematics and Optimization , 2011 .

[39]  Dieter Rautenbach,et al.  Edge-Injective and Edge-Surjective Vertex Labellings , 2010, SIAM J. Discret. Math..

[40]  Qinglin Yu,et al.  L-factors and adjacent vertex-distinguishing edge-weighting , 2010, 1007.1295.

[41]  Richard H. Schelp,et al.  Adjacent Vertex Distinguishing Edge-Colorings , 2007, SIAM J. Discret. Math..

[42]  Benjamin Douglas Seamone Derived colourings of graphs , 2012 .

[43]  Olivier Togni,et al.  Neighbor-distinguishing k-tuple edge-colorings of graphs , 2009, Discret. Math..

[44]  On vertex-coloring edge-weighting of graphs , 2009 .

[45]  Gary Chartrand,et al.  The set chromatic number of a graph , 2009, Discuss. Math. Graph Theory.

[46]  Iiro S. Honkala,et al.  Locally identifying colourings for graphs with given maximum degree , 2011, Discret. Math..

[47]  Bruce A. Reed,et al.  Vertex colouring edge partitions , 2005, J. Comb. Theory B.

[48]  Jakub Przybylo,et al.  A new upper bound for the total vertex irregularity strength of graphs , 2009, Discret. Math..

[49]  Bruce A. Reed,et al.  A Bound on the Total Chromatic Number , 1998, Comb..

[50]  Jakub Przybylo,et al.  Total Weight Choosability of Graphs , 2011, Electron. J. Comb..

[51]  Hao Li,et al.  On the Vertex-Distinguishing Proper Edge-Colorings of Graphs , 1999, J. Comb. Theory B.

[52]  A. Thomason,et al.  Edge weights and vertex colours , 2004 .

[53]  Marcin Anholcer Product irregularity strength of graphs , 2009, Discret. Math..

[54]  Sylvain Gravier,et al.  Locally Identifying Coloring of Graphs , 2010, Electron. J. Comb..

[55]  Jianfang Wang,et al.  Adjacent strong edge coloring of graphs , 2002, Appl. Math. Lett..

[56]  G. Chartrand,et al.  The multiset chromatic number of a graph , 2009 .

[57]  Brett Stevens,et al.  Vertex-colouring edge-weightings with two edge weights , 2012, Discret. Math. Theor. Comput. Sci..

[58]  Gary Chartrand,et al.  Recognizable colorings of graphs , 2008, Discuss. Math. Graph Theory.

[59]  S. Akbari,et al.  On the Lucky Choice Number of Graphs , 2013, Graphs Comb..

[60]  M. Kazemi,et al.  Computation of lucky number of planar graphs is NP-hard , 2012, Inf. Process. Lett..

[61]  Ervin Györi,et al.  A new type of edge-derived vertex coloring , 2009, Discret. Math..

[62]  Florian Pfender,et al.  Vertex-coloring edge-weightings: Towards the 1-2-3-conjecture , 2010, J. Comb. Theory B.

[63]  Mirko Hornák,et al.  General neighbour-distinguishing index of a graph , 2008, Discret. Math..

[64]  Qinglin Yu,et al.  On vertex-coloring 13-edge-weighting , 2008 .

[65]  Oleg Pikhurko Characterization of Product Anti-Magic Graphs of Large Order , 2007, Graphs Comb..

[66]  Till Nierhoff A Tight Bound on the Irregularity Strength of Graphs , 2000, SIAM J. Discret. Math..

[67]  Bruce A. Reed,et al.  Acyclic Coloring of Graphs , 1991, Random Struct. Algorithms.

[68]  Florian Pfender,et al.  A New Upper Bound for the Irregularity Strength of Graphs , 2011, SIAM J. Discret. Math..

[69]  Grzegorz Matecki,et al.  2 Coloring number of graphs and hypergraphs , 2012 .