Microbial nitrogen cycling processes in oxygen minimum zones.

Oxygen minimum zones (OMZs) harbor unique microbial communities that rely on alternative electron acceptors for respiration. Conditions therein enable an almost complete nitrogen (N) cycle and substantial N-loss. N-loss in OMZs is attributable to anammox and heterotrophic denitrification, whereas nitrate reduction to nitrite along with dissimilatory nitrate reduction to ammonium are major remineralization pathways. Despite virtually anoxic conditions, nitrification also occurs in OMZs, converting remineralized ammonium to N-oxides. The concurrence of all these processes provides a direct channel from organic N to the ultimate N-loss, whereas most individual processes are likely controlled by organic matter. Many microorganisms inhabiting the OMZs are capable of multiple functions in the N- and other elemental cycles. Their versatile metabolic potentials versus actual activities present a challenge to ecophysiological and biogeochemical measurements. These challenges need to be tackled before we can realistically predict how N-cycling in OMZs, and thus oceanic N-balance, will respond to future global perturbations.

[1]  E. Bock,et al.  Growth of Nitrobacter in the presence of organic matter , 1976, Archives of Microbiology.

[2]  G. Luther,et al.  Iodine chemistry reflects productivity and denitrification in the Arabian Sea: evidence for flux of dissolved species from sediments of western India into the OMZ , 2002 .

[3]  P. Engström,et al.  Anaerobic ammonium oxidation by nitrite (anammox): Implications for N2 production in coastal marine sediments , 2005 .

[4]  O. Ulloa,et al.  Bacterial diversity in the oxygen minimum zone of the eastern tropical South Pacific. , 2008, Environmental microbiology.

[5]  John J. Helly,et al.  Global distribution of naturally occurring marine hypoxia on continental margins , 2004 .

[6]  J. G. Kuenen,et al.  Copyright � 1995, American Society for Microbiology Anaerobic Oxidation of Ammonium Is a Biologically Mediated Process , 1994 .

[7]  B. Ward,et al.  Dissimilatory Nitrite Reductase Genes from Autotrophic Ammonia-Oxidizing Bacteria , 2001, Applied and Environmental Microbiology.

[8]  R. Glud,et al.  Denitrification and anammox activity in Arctic marine sediments , 2004 .

[9]  W. Brandhorst Nitrification and Denitrification in the Eastern Tropical North Pacific , 1959 .

[10]  J. Toggweiler,et al.  Global significance of nitrous‐oxide production and transport from oceanic low‐oxygen zones: A modeling study , 2000 .

[11]  J. Lennon,et al.  Dormancy contributes to the maintenance of microbial diversity , 2010, Proceedings of the National Academy of Sciences.

[12]  K. Schleifer,et al.  In Situ Characterization ofNitrospira-Like Nitrite-Oxidizing Bacteria Active in Wastewater Treatment Plants , 2001, Applied and Environmental Microbiology.

[13]  A. Paulmier,et al.  Oxygen minimum zones (OMZs) in the modern ocean , 2009 .

[14]  Nicolas Gruber,et al.  Denitrification and N2 fixation in the Pacific Ocean , 2001 .

[15]  S. Naqvi Some aspects of the oxygen-deficient conditions and denitrification in the Arabian Sea , 1987 .

[16]  M. Trimmer,et al.  High‐resolution profiles and nitrogen isotope tracing reveal a dominant source of nitrous oxide and multiple pathways of nitrogen gas formation in the central Arabian Sea , 2007 .

[17]  O. Ulloa,et al.  Anaerobic ammonium oxidation in the oxygen‐deficient waters off northern Chile , 2006 .

[18]  G. Luther,et al.  Processes controlling the distribution and cycling of manganese in the oxygen minimum zone of the Arabian Sea , 2000 .

[19]  B. Ward,et al.  Denitrification exceeds anammox as a nitrogen loss pathway in the Arabian Sea oxygen minimum zone , 2010 .

[20]  M. Strous,et al.  Anammox bacteria disguised as denitrifiers: nitrate reduction to dinitrogen gas via nitrite and ammonium. , 2007, Environmental microbiology.

[21]  Marc Strous,et al.  Cell compartmentalisation in planctomycetes: novel types of structural organisation for the bacterial cell , 2001, Archives of Microbiology.

[22]  R. Amann,et al.  Massive nitrogen loss from the Benguela upwelling system through anaerobic ammonium oxidation. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[23]  Lesley A. Robertson,et al.  Autotrophic growth of anaerobic ammonium-oxidizing micro-organisms in a fluidized bed reactor , 1996 .

[24]  K. Schleifer,et al.  Oxidation of inorganic nitrogen compounds as energy source. , 1992 .

[25]  Yuko Watanabe,et al.  Dissimilatory Iodate Reduction by Marine Pseudomonas sp. Strain SCT , 2007, Applied and Environmental Microbiology.

[26]  A. Hooper,et al.  Electron transfer during the oxidation of ammonia by the chemolithotrophic bacterium Nitrosomonas europaea. , 2000, Biochimica et biophysica acta.

[27]  Nicolas Gruber,et al.  Ocean deoxygenation in a warming world. , 2010, Annual review of marine science.

[28]  M. Kuypers,et al.  Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile , 2009 .

[29]  Klaus Butterbach-Bahl,et al.  Methods for measuring denitrification: diverse approaches to a difficult problem. , 2006, Ecological applications : a publication of the Ecological Society of America.

[30]  D. Focht,et al.  15N Kinetic Analysis of N2O Production by Nitrosomonas europaea: an Examination of Nitrifier Denitrification , 1985, Applied and environmental microbiology.

[31]  O. White,et al.  Environmental Genome Shotgun Sequencing of the Sargasso Sea , 2004, Science.

[32]  M. Höfle,et al.  Identification of a Thiomicrospira denitrificans-Like Epsilonproteobacterium as a Catalyst for Autotrophic Denitrification in the Central Baltic Sea , 2006, Applied and Environmental Microbiology.

[33]  W. König,et al.  Nitrite reductase activity in Nitrobacter vulgaris , 1990 .

[34]  F. Rainey,et al.  Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., novel and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic , 2001, International journal of systematic and evolutionary microbiology.

[35]  J. G. Kuenen,et al.  Missing lithotroph identified as new planctomycete , 1999, Nature.

[36]  M. Strous,et al.  Propionate Oxidation by and Methanol Inhibition of Anaerobic Ammonium-Oxidizing Bacteria , 2005, Applied and Environmental Microbiology.

[37]  J. Strickland,et al.  The isolation, purification and some kinetic studies of marine nitrifying bacteria , 1968 .

[38]  M. Graco,et al.  Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone , 2007 .

[39]  D. Güven Effects of Different Carbon Sources on Denitrification Efficiency Associated with Culture Adaptation and C/N Ratio , 2009 .

[40]  R. Ganeshram,et al.  Glacial-interglacial variability in denitrification in the World's Oceans: Causes and consequences , 2000 .

[41]  B. Thamdrup,et al.  Factors Controlling Anaerobic Ammonium Oxidation with Nitrite in Marine Sediments , 2002, Applied and Environmental Microbiology.

[42]  J. Tiedje,et al.  Kinetic Explanation for Accumulation of Nitrite, Nitric Oxide, and Nitrous Oxide During Bacterial Denitrification , 1981, Applied and environmental microbiology.

[43]  Wriddhiman Ghosh,et al.  Biochemistry and molecular biology of lithotrophic sulfur oxidation by taxonomically and ecologically diverse bacteria and archaea. , 2009, FEMS microbiology reviews.

[44]  J. G. Kuenen,et al.  Nitrous oxide (N2O) production by Alcaligenes faecalis during feast and famine regimes , 2000 .

[45]  M. Kuypers,et al.  Rates and regulation of anaerobic ammonium oxidation and denitrification in the Black Sea , 2008 .

[46]  Lisa C. Crossman,et al.  The diversity of redox proteins involved in bacterial heterotrophic nitrification and aerobic denitrification. , 1998, Biochemical Society transactions.

[47]  J. G. Kuenen,et al.  Aerobic denitrification in various heterotrophic nitrifiers , 1989, Antonie van Leeuwenhoek.

[48]  J. Sprintall,et al.  Expanding Oxygen-Minimum Zones in the Tropical Oceans , 2008, Science.

[49]  J. G. Kuenen,et al.  Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor. , 1997, Microbiology.

[50]  Yong-Ha Park,et al.  Diversity of Ammonium-oxidizing Bacteria in a Granular Sludge Anaerobic Ammonium-oxidizing (anammox) Reactor , 2022 .

[51]  Robert L. Smith,et al.  Denitrification and hydrogen sulfide in the Peru upwelling region during 1976 , 1977 .

[52]  N. Gruber The Dynamics of the Marine Nitrogen Cycle and its Influence on Atmospheric CO2 Variations , 2004 .

[53]  A. Devol,et al.  A global marine‐fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling , 2002 .

[54]  M. Strous,et al.  Effects of aerobic and microaerobic conditions on anaerobic ammonium-oxidizing (anammox) sludge , 1997, Applied and environmental microbiology.

[55]  W. Thomas On denitrification in the northeastern tropical Pacific Ocean , 1966 .

[56]  S. Ferguson Denitrification and its control , 2004, Antonie van Leeuwenhoek.

[57]  C. Moreno-Vivián,et al.  Nitrate reduction and the nitrogen cycle in archaea. , 2004, Microbiology.

[58]  O. Zafiriou,et al.  Nitrification and nitric oxide in the oxygen minimum of the eastern tropical North Pacific , 1988 .

[59]  J. J. Heijnen,et al.  The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms , 1998, Applied Microbiology and Biotechnology.

[60]  J. Prosser,et al.  Phylogeny of nitrite reductase (nirK) and nitric oxide reductase (norB) genes from Nitrosospira species isolated from soil. , 2007, FEMS microbiology letters.

[61]  Edward F. DeLong,et al.  The microbial ocean from genomes to biomes , 2009, Nature.

[62]  P. Wilderer,et al.  Growth of nitrobacter in the absence of dissolved oxygen , 1988 .

[63]  R. Amann,et al.  A microdiversity study of anammox bacteria reveals a novel Candidatus Scalindua phylotype in marine oxygen minimum zones. , 2008, Environmental microbiology.

[64]  H. Uchiyama,et al.  Denitrification by fungi. , 1992, FEMS microbiology letters.

[65]  D. Lovley Dissimilatory Fe(III) and Mn(IV)-reducing Prokaryotes , 2000 .

[66]  E. Bock Growth of Nitrobacter in the presence of organic matter , 1976, Archives of Microbiology.

[67]  M. Strous,et al.  Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria. , 2007, Systematic and applied microbiology.

[68]  Jörg Simon,et al.  Enzymology and bioenergetics of respiratory nitrite ammonification. , 2002, FEMS microbiology reviews.

[69]  R. Amann,et al.  Detoxification of sulphidic African shelf waters by blooming chemolithotrophs , 2009, Nature.

[70]  G. Luther,et al.  Sub-surface iodide maxima: evidence for biologically catalyzed redox cycling in Arabian Sea OMZ during the SW intermonsoon , 1997 .

[71]  C. M. Brown,et al.  NITRITE REDUCTION TO AMMONIA BY FERMENTATIVE BACTERIA: A SHORT CIRCUIT IN THE BIOLOGICAL NITROGEN CYCLE , 1980 .

[72]  J. Karstensen,et al.  The oxygen minimum zones in the eastern tropical Atlantic and Pacific oceans , 2008 .

[73]  G. A. Ritchie,et al.  Identification of the sources of nitrous oxide produced by oxidative and reductive processes in Nitrosomonas europaea. , 1972, The Biochemical journal.

[74]  K. Bruland,et al.  The contrasting biogeochemistry of iron and manganese in the Pacific Ocean , 1987 .

[75]  W. Smethie Nutrient regeneration and denitrification in low oxygen fjords , 1987 .

[76]  D. Canfield,et al.  Anaerobic ammonium-oxidizing bacteria in marine environments: widespread occurrence but low diversity. , 2007, Environmental microbiology.

[77]  J. G. Kuenen,et al.  Anaerobic ammonium oxidation by anammox bacteria in the Black Sea , 2003, Nature.

[78]  E Broda,et al.  Two kinds of lithotrophs missing in nature. , 1977, Zeitschrift fur allgemeine Mikrobiologie.

[79]  Dmitrij Frishman,et al.  Deciphering the evolution and metabolism of an anammox bacterium from a community genome , 2006, Nature.

[80]  J. G. Kuenen,et al.  Colorless Sulfur Bacteria , 1992 .

[81]  James J. Anderson,et al.  A model for nitrate distributions in oceanic oxygen minimum zones , 1982 .

[82]  D. Richardson,et al.  Cytochrome c nitrite reductase: from structural to physicochemical analysis. , 2005, Biochemical Society transactions.

[83]  L. Codispoti,et al.  Budgetary and biogeochemical implications of N2O isotope signatures in the Arabian Sea , 1998, Nature.

[84]  B. Ward,et al.  Anaerobic Ammonium Oxidation (Anammox) in Chesapeake Bay Sediments , 2008, Microbial Ecology.

[85]  P. Wood Nitrification as a bacterial energy source , 1986 .

[86]  E. Delong,et al.  Archaeal dominance in the mesopelagic zone of the Pacific Ocean , 2001, Nature.

[87]  S. Calvert,et al.  Upwelling and nutrient regeneration in the Benguela Current, October, 1968 , 1971 .

[88]  B. Wehrli,et al.  Anaerobic ammonium oxidation in a tropical freshwater system (Lake Tanganyika). , 2006, Environmental microbiology.

[89]  L. Stein,et al.  Molecular diversity of nitrite reductase genes (nirK) in nitrifying bacteria. , 2007, Environmental microbiology.

[90]  B. Thamdrup,et al.  Production of N2 through Anaerobic Ammonium Oxidation Coupled to Nitrate Reduction in Marine Sediments , 2002, Applied and Environmental Microbiology.

[91]  O. Ulloa,et al.  Determination of ultra‐low oxygen concentrations in oxygen minimum zones by the STOX sensor , 2009 .

[92]  J. Butler,et al.  Global distribution of N2O and the ΔN2O‐AOU yield in the subsurface ocean , 2003 .

[93]  B. Ward,et al.  Phylogenetic analysis of nitric oxide reductase gene homologues from aerobic ammonia-oxidizing bacteria. , 2005, FEMS microbiology ecology.

[94]  J. Beman,et al.  Ubiquity and diversity of ammonia-oxidizing archaea in water columns and sediments of the ocean. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[95]  Marc Strous,et al.  The anammoxosome: an intracytoplasmic compartment in anammox bacteria. , 2004, FEMS microbiology letters.

[96]  L. Codispoti,et al.  Suboxic respiration in the oceanic water column , 2005 .

[97]  F. A. Richards,et al.  OXYGEN DEFICIENT CONDITIONS AND NITRATE REDUCTION IN THE EASTERN TROPICAL NORTH PACIFIC OCEAN1 , 1972 .

[98]  L. Codispoti,et al.  Denitrification rates and excess nitrogen gas concentrations in the Arabian Sea oxygen deficient zone , 2006 .

[99]  K. Wyrtki The oxygen minima in relation to ocean circulation , 1962 .

[100]  S. Naqvi,et al.  Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf , 2000, Nature.

[101]  A. Hooper,et al.  Hydroxylamine oxidoreductase of Nitrosomonas. Production of nitric oxide from hydroxylamine. , 1979, Biochimica et biophysica acta.

[102]  B. Ward,et al.  Denitrification as the dominant nitrogen loss process in the Arabian Sea , 2009, Nature.

[103]  A. Freitag,et al.  Growth of Nitrobacter by dissimilatoric nitrate reduction , 1987 .

[104]  J. S⊘rensen Nitrate reduction in marine sediment: Pathways and interactions with iron and sulfur cycling , 1987 .

[105]  B. Ward,et al.  Chemoautotrophic activity and nitrification in the oxygen minimum zone off Peru , 1989 .

[106]  M. Błaszczyk Effect of Medium Composition on the Denitrification of Nitrate by Paracoccus denitrificans , 1993, Applied and environmental microbiology.

[107]  D. Hammond,et al.  Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis , 1979 .

[108]  M. Wagner Single-cell ecophysiology of microbes as revealed by Raman microspectroscopy or secondary ion mass spectrometry imaging. , 2009, Annual review of microbiology.

[109]  P. Engström,et al.  Anaerobic ammonium oxidation in deep‐sea sediments off the Washington margin , 2009 .

[110]  D. Arp,et al.  Inhibition of Ammonia Oxidation in Nitrosomonas europaea by Sulfur Compounds: Thioethers Are Oxidized to Sulfoxides by Ammonia Monooxygenase , 1993, Applied and environmental microbiology.

[111]  Adri C. T. van Duin,et al.  Linearly concatenated cyclobutane lipids form a dense bacterial membrane , 2002, Nature.

[112]  E. Bock,et al.  Anaerobic ammonia oxidation with nitrogen dioxide by Nitrosomonas eutropha , 1997, Archives of Microbiology.

[113]  F. A. Richards,et al.  An analysis of the horizontal regime of denitrification in the eastern tropical North Pacific1 , 1976 .

[114]  W. Zumft Cell biology and molecular basis of denitrification. , 1997, Microbiology and molecular biology reviews : MMBR.

[115]  M. Trimmer,et al.  Anaerobic Ammonium Oxidation Measured in Sediments along the Thames Estuary, United Kingdom , 2003, Applied and Environmental Microbiology.

[116]  M. Könneke,et al.  Isolation of an autotrophic ammonia-oxidizing marine archaeon , 2005, Nature.

[117]  M. Höfle,et al.  Shewanella denitrificans sp. nov., a vigorously denitrifying bacterium isolated from the oxic-anoxic interface of the Gotland Deep in the central Baltic Sea. , 2002, International journal of systematic and evolutionary microbiology.

[118]  C. Brondino,et al.  Bacterial nitrate reductases: Molecular and biological aspects of nitrate reduction. , 2006, Journal of inorganic biochemistry.

[119]  K. Finster,et al.  Desulfovibrio oceani subsp. oceani sp. nov., subsp. nov. and Desulfovibrio oceani subsp. galateae subsp. nov., novel sulfate-reducing bacteria isolated from the oxygen minimum zone off the coast of Peru , 2010, Antonie van Leeuwenhoek.

[120]  D. Nicholas,et al.  Definitive 15N NMR evidence that water serves as a source of ‘O’ during nitrite oxidation by Nitrobacter agilis , 1983, FEBS letters.

[121]  E. Pfeiffer,et al.  Cultivation of a novel cold-adapted nitrite oxidizing betaproteobacterium from the Siberian Arctic , 2007, The ISME Journal.

[122]  R. Amann,et al.  Revising the nitrogen cycle in the Peruvian oxygen minimum zone , 2009, Proceedings of the National Academy of Sciences.

[123]  K. Bruland,et al.  The response of trace element redox couples to suboxic conditions in the water column , 1997 .

[124]  Nicolas Gruber,et al.  Spatial coupling of nitrogen inputs and losses in the ocean , 2007, Nature.

[125]  Gerald H. Haug,et al.  Isotopic constraints on glacial/interglacial changes in the oceanic nitrogen budget , 2004 .

[126]  W. Naqvi Geographical extent of denitrification in the Arabian Sea in relation to some physical processes , 1991 .

[127]  H. Urrutia,et al.  Ammonia-Oxidizing β-Proteobacteria from the Oxygen Minimum Zone off Northern Chile , 2007, Applied and Environmental Microbiology.

[128]  E. Bock,et al.  Nitrogen loss caused by denitrifying Nitrosomonas cells using ammonium or hydrogen as electron donors and nitrite as electron acceptor , 2004, Archives of Microbiology.

[129]  G. Voordouw,et al.  Isolation and Characterization of Strains CVO and FWKO B, Two Novel Nitrate-Reducing, Sulfide-Oxidizing Bacteria Isolated from Oil Field Brine , 2000, Applied and Environmental Microbiology.

[130]  K. Nealson,et al.  Microbial Communities Associated with Geological Horizons in Coastal Subseafloor Sediments from the Sea of Okhotsk , 2003, Applied and Environmental Microbiology.

[131]  D. Nelson,et al.  High Nitrate Concentrations in Vacuolate, Autotrophic Marine Beggiatoa spp , 1996, Applied and environmental microbiology.

[132]  Bjørn Sundby,et al.  Interactions of manganese with the nitrogen cycle: Alternative pathways to dinitrogen , 1997 .

[133]  F. Jorissen,et al.  Widespread occurrence of nitrate storage and denitrification among Foraminifera and Gromiida , 2009, Proceedings of the National Academy of Sciences.

[134]  L. Codispoti,et al.  Nitrification, denitrification and nitrous oxide cycling in the eastern tropical South Pacific ocean , 1985 .

[135]  M. Strous,et al.  Candidatus "Scalindua brodae", sp. nov., Candidatus "Scalindua wagneri", sp. nov., two new species of anaerobic ammonium oxidizing bacteria. , 2003, Systematic and applied microbiology.

[136]  D. Canfield,et al.  N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica , 2003, Nature.

[137]  F. A. Richards,et al.  The influence of organisms on the composition of sea-water , 1963 .

[138]  S. Watanabe,et al.  Auxiliary Material for 2006JG000227 Role of nitrification and denitrification on the nitrous oxide cycle in the eastern tropical North Pacific and Gulf of California , 2007 .

[139]  A. Hooper,et al.  Enzymology of the oxidation of ammonia to nitrite by bacteria , 1997, Antonie van Leeuwenhoek.

[140]  T. Goepfert,et al.  Reduced iron associated with secondary nitrite maxima in the Arabian Sea , 2007 .

[141]  J. G. Kuenen,et al.  Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor , 1995 .

[142]  Nicolas Gruber,et al.  Global patterns of marine nitrogen fixation and denitrification , 1997 .

[143]  R. Rosenberg,et al.  Spreading Dead Zones and Consequences for Marine Ecosystems , 2008, Science.

[144]  Hans W. Paerl,et al.  The oceanic fixed nitrogen and nitrous oxide budgets: Moving targets as we enter the anthropocene?* , 2001 .

[145]  P. Wood,et al.  Ethylene oxidation by Nitrosomonas europaea , 1984, Archives of Microbiology.

[146]  M. V. van Loosdrecht,et al.  Response of Anaerobic Ammonium-Oxidizing Bacteria to Hydroxylamine , 2008, Applied and Environmental Microbiology.

[147]  A. Devol Bacterial oxygen uptake kinetics as related to biological processes in oxygen deficient zones of the oceans , 1978 .

[148]  Nicolas Gruber,et al.  The Marine Nitrogen Cycle: Overview and Challenges , 2008 .

[149]  S. Iwata,et al.  Protonmotive force generation by a redox loop mechanism , 2003, FEBS letters.

[150]  E. V. van Donselaar,et al.  Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production. , 2008, Environmental microbiology.

[151]  N. Yoshida,et al.  Denitrification and nitrous oxide cycling within the upper oxycline of the eastern tropical South Pacific oxygen minimum zone , 2009 .

[152]  Delwiche Cc The Nitrogen Cycle , 1970, Soil Microbiology.

[153]  B. Griffin,et al.  Growth Yields in Bacterial Denitrification and Nitrate Ammonification , 2007, Applied and Environmental Microbiology.

[154]  P. Kroneck,et al.  A NapC/NirT‐type cytochrome c (NrfH) is the mediator between the quinone pool and the cytochrome c nitrite reductase of Wolinella succinogenes , 2000, Molecular microbiology.

[155]  O. Ulloa,et al.  Communities of nirS-type denitrifiers in the water column of the oxygen minimum zone in the eastern South Pacific. , 2005, Environmental microbiology.

[156]  B. V. Mooy,et al.  Impact of suboxia on sinking particulate organic carbon: Enhanced carbon flux and preferential degradation of amino acids via denitrification , 2002 .

[157]  K. Schleifer,et al.  Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. , 2000, Systematic and applied microbiology.

[158]  E. Bock,et al.  The impact of organic matter on nitric oxide formation by Nitrosomonas europaea , 1992, Archives of Microbiology.

[159]  S. Tsunogai,et al.  Formation of iodide-iodine in the ocean , 1969 .

[160]  B. Thamdrup,et al.  Effects of Specific Inhibitors on Anammox and Denitrification in Marine Sediments , 2007, Applied and Environmental Microbiology.

[161]  S. Wofsy,et al.  Bacterial transformations of inorganic nitrogen in the oxygen-deficient waters of the Eastern Tropical South Pacific Ocean , 1990 .

[162]  Rudolf Amann,et al.  Molecular identification of picoplankton populations in contrasting waters of the Arabian Sea , 2005 .

[163]  S. Hallam,et al.  Microbial community dynamics in a seasonally anoxic fjord: Saanich Inlet, British Columbia. , 2010, Environmental microbiology.

[164]  E. Bock,et al.  Membrane-bound nitrite oxidoreductase of Nitrobacter: evidence for a nitrate reductase system , 1984, Archives of Microbiology.

[165]  K. Nealson,et al.  Reduction of iodate in seawater during Arabian Sea shipboard incubations and in laboratory cultures of the marine bacterium Shewanella putrefaciens strain MR-4 , 1997 .

[166]  D. Richardson,et al.  Bacterial respiration: a flexible process for a changing environment. , 2000, Microbiology.