Comparative Morphology of the Euglenid Pellicle. I. Patterns of Strips and Pores

Abstract In anticipation that improved knowledge of euglenid morphology will provide robust apomorphy-based definitions for clades, transmission and scanning electron microscopy were used to reveal novel morphological patterns associated with the euglenid pellicle. In some taxa, the number of pellicle strips around the cell periphery reduces as discrete whorls at the anterior and posterior ends of the cell. The number of whorls at either end varies between selected euglenid taxa but is invariant within a taxon. The pattern of strip reduction associated with these whorls is shown to have at least three evolutionarily linked states: exponential, pseudoexponential, and linear. Two general equations describe these states near the posterior end of euglenid cells. Exponential patterns of strip reduction near the anterior end are described by a third equation. In addition, several euglenid taxa were found to possess conspicuous pellicle pores. These pores are arranged in discrete rows that follow the articulation zones between adjacent strips. The number of strips between rows of pores varies between taxa and displays a series of consecutive character states that differ by a power of two. The patterns of pores may not only have phylogenetical and taxonomical value but may provide morphological markers for following strip maturation during cytoskeletal reproduction.

[1]  A. G. Lowndes,et al.  The genus Euglena , 1954 .

[2]  J. Sommer THE ULTRASTRUCTURE OF THE PELLICLE COMPLEX OF EUGLENA GRACILIS , 1965, The Journal of cell biology.

[3]  K. Olli RESTING CYST FORMATION OF EUTREPTIELLA GYMNASTICA (EUGLENOPHYCEAE) IN THE NORTHERN COASTAL BALTIC SEA 1 , 1996 .

[4]  V. Groupé Surface Striations of Euglena gracilis Revealed by Electron Microscopy , 1947, Proceedings of the Society for Experimental Biology and Medicine. Society for Experimental Biology and Medicine.

[5]  M. Schagerl,et al.  Comparative ultrastructure of the cytoskeleton and nucleus of Distigma (euglenozoa) , 1999 .

[6]  J. Marrs,et al.  The two major membrane skeletal proteins (articulins) of Euglena gracilis define a novel class of cytoskeletal proteins , 1992, The Journal of cell biology.

[7]  G. Tell,et al.  Ultrastructure of the pellicle and the envelope of some euglenoid flagellates from Argentina by means of S.E.M. , 1989 .

[8]  R. Willey FINE STRUCTURE OF THE MUCOCYSTS OF COLACIUM CALVUM (EUGLENOPHYCEAE) 1 , 1984 .

[9]  J. Blum,et al.  Cell division in Astasia longa. , 1965, Experimental cell research.

[10]  M. A. Farmer,et al.  Flagellar systems in the euglenoid flagellates. , 1988, Bio Systems.

[11]  R. Triemer,et al.  A Molecular Study of Euglenoid Phylogeny using Small Subunit rDNA , 1999, The Journal of eukaryotic microbiology.

[12]  P. Walne,et al.  Observations on the Fine Structure ot the Pellicle Pores of Euglena granulata , 1967 .

[13]  K. J. Owens,et al.  THE FLAGELLAR APPARATUS AND RESERVOIR/CANAL CYTOSKELETON OF CRYPTOGLENA PIGRA (EUGLENOPHYCEAE) 1 , 1988 .

[14]  J. Cann Ultrastructural Observations of Taxonomic Importance on the Euglenoid Genera GyropaigneSkuja, ParmidiumChristen, and RhabdospiraPringsheim (Euglenida: Rhabdomonadina) , 1986 .

[15]  T. Suzaki,et al.  Ultrastructure and Sliding of Pellicular Structures During Euglenoid Movement in Astasia longa Pringsheim (Sarcomastigophora, Euglenida) , 1986 .

[16]  D'arcy W. Thompson On growth and form i , 1943 .

[17]  R. Triemer,et al.  PHYLOGENETIC RELATIONSHIPS OF SELECTED EUGLENOID GENERA BASED ON MORPHOLOGICAL AND MOLECULAR DATA 1 , 1997 .

[18]  K. Hausmann,et al.  Extrusive organelles in protists. , 1978, International review of cytology.

[19]  R. Dubreuil,et al.  The membrane skeleton of a unicellular organism consists of bridged, articulating strips , 1985, The Journal of cell biology.

[20]  D. Angeler A light microscopical and ultrastructural investigation and validation of Khawkinea pertyi comb, nova (Euglenophyta) , 2000 .

[21]  I. Busse,et al.  Phylogenetic analyses of various euglenoid taxa (euglenozoa) based on 18s rdna sequence data , 2000 .

[22]  P. Walne,et al.  Structural characterization of Eutreptia pertyi (Euglenophyta). I : General description , 1991 .

[23]  Gordon F. Leedale,et al.  Pellicle structure in Euglena , 1964 .

[24]  R. Triemer ROLE OF GOLGI APPARATUS IN MUCILAGE PRODUCTION AND CYST FORMATION IN EUGLENA GRACILIS (EUGLENOPHYCEAE) 1 , 1980 .

[25]  P. Walne,et al.  Ultrastructure of mucocysts in Peranema trichophorum (Euglenophyceae) , 1983 .

[26]  N. Dragoș,et al.  Comparative fine structure of pellicular cytoskeleton in EuglenaEhrenberg , 1997 .

[27]  C. Greenblatt,et al.  A Pheophytin-like Pigment in Dark-Adapted Euglena gracilis , 1959 .

[28]  R. Willey,et al.  THE RESERVOIR CYTOSKELETON AND A POSSIBLE CYTOSTOMAL HOMOLOGUE IN COLACIUM (EUGLENOPHYCEAE) 1 , 1985 .

[29]  J. Rosowski,et al.  DEVELOPMENT OF MUCILAGINOUS SURFACES IN EUGLENOIDS. I. STALK MORPHOLOGY OF COLACIUM MUCRONATUM 1 , 1977 .

[30]  G. B. Bouck,et al.  Cortical structure and function in euglenoids with reference to trypanosomes, ciliates, and dinoflagellates. , 1996, International review of cytology.

[31]  D. Patterson,et al.  The Biology of free-living heterotrophic flagellates , 1992 .

[32]  E. Thompson,et al.  Evidence for the late origin of introns in chloroplast genes from an evolutionary analysis of the genus Euglena. , 1995, Nucleic acids research.

[33]  D'arcy W. Thompson On Growth and Form , 1945 .

[34]  J. Kirk,et al.  THE FINE STRUCTURE OF THE PELLICLE OF EUGLENA GRACILIS , 1964 .

[35]  T L JAHN,et al.  The Euglenoid Flagellates , 1946, The Quarterly Review of Biology.

[36]  J. Murray Control of cell shape by calcium in the euglenophyceae. , 1981, Journal of cell science.