Face Recognition Using L-Fisherfaces

An appearance-based face recognition approach called the L-Fisherfaces is proposed in this paper, By using Local Fisher Discriminant Embedding (LFDE), the face images are mapped into a face subspace for analysis. Different from Linear Discriminant Analysis (LDA), which effectively sees only the Euclidean structure of face space, LFDE finds an embedding that preserves local information, and obtains a face subspace that best detects the essential face manifold structure. Different from Locality Preserving Projections (LPP) and Unsupervised Discriminant projections (UDP), which ignore the class label information, LFDE searches for the project axes on which the data points of different classes are far from each other while requiring data points of the same class to be close to each other. We compare the proposed L-Fisherfaces approach with PCA, LDA, LPP, and UDP on three different face databases. Experimental results suggest that the proposed L-Fisherfaces provides a better representation and achieves higher accuracy in face recognition.

[1]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[2]  Azriel Rosenfeld,et al.  Face recognition: A literature survey , 2003, CSUR.

[3]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[4]  Honggang Zhang,et al.  Comments on "Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Application to Face and Palm Biometrics" , 2007, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Jian Yang,et al.  Globally Maximizing, Locally Minimizing: Unsupervised Discriminant Projection with Applications to Face and Palm Biometrics , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[6]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression (PIE) database , 2002, Proceedings of Fifth IEEE International Conference on Automatic Face Gesture Recognition.

[7]  M. Turk,et al.  Eigenfaces for Recognition , 1991, Journal of Cognitive Neuroscience.

[8]  Juyang Weng,et al.  Using Discriminant Eigenfeatures for Image Retrieval , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Xiaofei He,et al.  Locality Preserving Projections , 2003, NIPS.

[10]  Rama Chellappa,et al.  Human and machine recognition of faces: a survey , 1995, Proc. IEEE.

[11]  Terence Sim,et al.  The CMU Pose, Illumination, and Expression Database , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[12]  Yuxiao Hu,et al.  Face recognition using Laplacianfaces , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Jian Yang,et al.  Unsupervised Discriminant Projection Analysis for Feature Extr , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[14]  Hyeonjoon Moon,et al.  The FERET Evaluation Methodology for Face-Recognition Algorithms , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Robert P. W. Duin,et al.  Multiclass Linear Dimension Reduction by Weighted Pairwise Fisher Criteria , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[16]  Robert Clarke,et al.  Robust feature selection by weighted Fisher criterion for multiclass prediction in gene expression profiling , 2004, ICPR 2004.

[17]  David J. Kriegman,et al.  Eigenfaces vs. Fisherfaces: Recognition Using Class Specific Linear Projection , 1996, ECCV.

[18]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.