A New Cascade Model for the Hierarchical Joint Classification of Multitemporal and Multiresolution Remote Sensing Data

In this paper, we propose a novel method for the joint classification of both multidate and multiresolution remote sensing imagery, which represents an important and relatively unexplored classification problem. The proposed classifier is based on an explicit hierarchical graph-based model that is sufficiently flexible to address a coregistered time series of images collected at different spatial resolutions. Within this framework, a novel element of the proposed approach is the use of multiple quadtrees in cascade, each associated with the images available at each observation date in the considered time series. For each date, the input images are inserted in a hierarchical structure on the basis of their resolutions, whereas missing levels are filled in with wavelet transforms of the images embedded in finer-resolution levels. This approach is aimed at both exploiting multiscale information, which is known to play a crucial role in high-resolution image analysis, and supporting input images acquired at different resolutions in the input time series. The experimental results are shown for multitemporal and multiresolution optical data.

[1]  Anil K. Jain,et al.  Markov random fields : theory and application , 1993 .

[2]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  François Petitjean,et al.  Satellite Image Time Series Analysis Under Time Warping , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[4]  A. P. Dawid,et al.  Applications of a general propagation algorithm for probabilistic expert systems , 1992 .

[5]  Sebastiano B. Serpico,et al.  A Markov random field approach to spatio-temporal contextual image classification , 2003, IEEE Trans. Geosci. Remote. Sens..

[6]  S. Mitter,et al.  On sampling methods and annealing algorithms , 1990 .

[7]  Patrick Pérez,et al.  Semi-iterative inference with hierarchical models , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[8]  Michèle Basseville,et al.  Modeling and estimation of multiresolution stochastic processes , 1992, IEEE Trans. Inf. Theory.

[9]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[10]  A. Benveniste,et al.  Multiscale autoregressive processes. I. Schur-Levinson parametrizations , 1992, IEEE Trans. Signal Process..

[11]  L. Baum,et al.  A Maximization Technique Occurring in the Statistical Analysis of Probabilistic Functions of Markov Chains , 1970 .

[12]  Stefan Voigt,et al.  Unsupervised Extraction of Flood-Induced Backscatter Changes in SAR Data Using Markov Image Modeling on Irregular Graphs , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[13]  Azriel Rosenfeld,et al.  A Pyramid Framework for Early Vision: Multiresolutional Computer Vision , 1993 .

[14]  Josiane Zerubia,et al.  Bayesian image classification using Markov random fields , 1996, Image Vis. Comput..

[15]  Gabriele Moser,et al.  Supervised Classification of Multisensor and Multiresolution Remote Sensing Images With a Hierarchical Copula-Based Approach , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[16]  Sanguthevar Rajasekaran,et al.  On the Convergence Time of Simulated Annealing , 1990 .

[17]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[18]  P. H. Swain,et al.  Bayesian classification in a time-varying environment , 1978 .

[19]  Amelia Simó,et al.  Parameter estimation in Markov random field image modeling with imperfect observations. A comparative study , 2003, Pattern Recognit. Lett..

[20]  Stan Z. Li Markov Random Field Modeling in Image Analysis , 2009, Advances in Pattern Recognition.

[21]  Li Li,et al.  Hierarchical Segmentation of Multitemporal RADARSAT-2 SAR Data Using Stationary Wavelet Transform and Algebraic Multigrid Method , 2014, IEEE Transactions on Geoscience and Remote Sensing.

[22]  Patrick Pérez,et al.  Noniterative manipulation of discrete energy-based models for image analysis , 1997, Pattern Recognit..

[23]  Christian Heipke,et al.  Conditional Random Fields for Multitemporal and Multiscale Classification of Optical Satellite Imagery , 2015, IEEE Transactions on Geoscience and Remote Sensing.

[24]  R. F.,et al.  Mathematical Statistics , 1944, Nature.

[25]  Gabriele Moser,et al.  New cascade model for hierarchical joint classification of multitemporal, multiresolution and multisensor remote sensing data , 2014, 2014 IEEE International Conference on Image Processing (ICIP).

[26]  ψψAABB xxAA,et al.  Markov Random Fields , 1982, Encyclopedia of Social Network Analysis and Mining.

[27]  Leonhard Held,et al.  Gaussian Markov Random Fields: Theory and Applications , 2005 .

[28]  H. B. Mitchell Markov Random Fields , 1982 .

[29]  Narendra Ahuja,et al.  Low-Level Hierarchical Multiscale Segmentation Statistics of Natural Images , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[30]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[31]  Lorenzo Bruzzone,et al.  A neural-statistical approach to multitemporal and multisource remote-sensing image classification , 1999, IEEE Trans. Geosci. Remote. Sens..

[32]  Patrick Pérez,et al.  Discrete Markov image modeling and inference on the quadtree , 2000, IEEE Trans. Image Process..

[33]  Ajit Singh,et al.  Incremental estimation of image flow using a Kalman filter , 1992, J. Vis. Commun. Image Represent..

[34]  Paul Fieguth,et al.  Statistical Image Processing and Multidimensional Modeling , 2010 .

[35]  Josiane Zerubia,et al.  Markov Random Fields in Image Segmentation , 2012, Found. Trends Signal Process..

[36]  Gabriele Moser,et al.  Weight Parameter Optimization by the Ho–Kashyap Algorithm in MRF Models for Supervised Image Classification , 2006, IEEE Transactions on Geoscience and Remote Sensing.

[37]  G. Celeux,et al.  Stochastic versions of the em algorithm: an experimental study in the mixture case , 1996 .

[38]  Leszek Wojnar,et al.  Image Analysis , 1998 .

[39]  Charles A. Bouman,et al.  A multiscale random field model for Bayesian image segmentation , 1994, IEEE Trans. Image Process..

[40]  W. Clem Karl,et al.  Efficient multiscale regularization with applications to the computation of optical flow , 1994, IEEE Trans. Image Process..

[41]  Charles A. Bouman,et al.  Multiple Resolution Segmentation of Textured Images , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Peijuan Wang,et al.  Fusing Landsat and MODIS Data for Vegetation Monitoring , 2015, IEEE Geoscience and Remote Sensing Magazine.

[43]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[44]  Gabriele Moser,et al.  Multiscale Unsupervised Change Detection on Optical Images by Markov Random Fields and Wavelets , 2011, IEEE Geoscience and Remote Sensing Letters.

[45]  W. Marsden I and J , 2012 .

[46]  Josiane Zerubia,et al.  Satellite image classification using a modified Metropolis dynamics , 1992, [Proceedings] ICASSP-92: 1992 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[47]  Emile H. L. Aarts,et al.  Simulated Annealing: Theory and Applications , 1987, Mathematics and Its Applications.

[48]  Anil K. Jain,et al.  Unsupervised Learning of Finite Mixture Models , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[49]  A. Benveniste,et al.  Multiscale Autoregressive Processes, Part I: , 1992 .

[50]  S. Mallat A wavelet tour of signal processing , 1998 .

[51]  T. Stephenson Image analysis , 1992, Nature.

[52]  Tomaso Poggio,et al.  Probabilistic Solution of Ill-Posed Problems in Computational Vision , 1987 .

[53]  Gerhard Winkler,et al.  Image Analysis, Random Fields and Markov Chain Monte Carlo Methods: A Mathematical Introduction , 2002 .

[54]  Patrick Pérez,et al.  Noniterative Manipulation of Discrete Energy-Based Models for Image Analysis , 1997, EMMCVPR.