Construction of surface measures for Brownian motion
暂无分享,去创建一个
[1] Tosio Kato. Perturbation theory for linear operators , 1966 .
[2] S. Minakshisundaram,et al. Some Properties of the Eigenfunctions of The Laplace-Operator on Riemannian Manifolds , 1949, Canadian Journal of Mathematics.
[3] H. Attouch. Variational convergence for functions and operators , 1984 .
[4] H. Weizsäcker,et al. The surface limit of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold , 2004 .
[5] Gian-Carlo Rota. Opérateurs maximaux monotones: H. Brézis, North-Holland, 1983, 183 pp. , 1985 .
[6] H. Brezis. Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert , 1973 .
[7] G. D. Maso,et al. An Introduction to-convergence , 1993 .
[8] H. Weizsäcker,et al. Brownian motion on a manifold as a limit of stepwise conditioned standard Brownian motions , 2000 .
[9] M. Brelot. Classical potential theory and its probabilistic counterpart , 1986 .
[10] Nadezda A. Sidorova. THE SMOLYANOV SURFACE MEASURE ON TRAJECTORIES IN A RIEMANNIAN MANIFOLD , 2004 .
[11] Michael Taylor,et al. Partial Differential Equations I: Basic Theory , 1996 .
[12] H. Weizsäcker,et al. Chernoff's Theorem and Discrete Time Approximations of Brownian Motion on Manifolds , 2004, math/0409155.
[13] B. Simon. Functional integration and quantum physics , 1979 .