Exhausting the Information: Novel Bayesian Combination of Photometric Redshift PDFs
暂无分享,去创建一个
[1] D. Gerdes,et al. PHAT: PHoto-z Accuracy Testing , 2010, 1008.0658.
[2] Alison L. Coil,et al. The DEIMOS spectrograph for the Keck II Telescope: integration and testing , 2003, SPIE Astronomical Telescopes + Instrumentation.
[3] T. Loredo,et al. A new method for the detection of a periodic signal of unknown shape and period , 1992 .
[4] Andrew R. Liddle,et al. Bayesian model averaging in astrophysics: a review , 2013, Stat. Anal. Data Min..
[5] Jiangang Hao,et al. ArborZ: PHOTOMETRIC REDSHIFTS USING BOOSTED DECISION TREES , 2009, The Astrophysical Journal.
[6] A. Fontana,et al. A CRITICAL ASSESSMENT OF PHOTOMETRIC REDSHIFT METHODS: A CANDELS INVESTIGATION , 2013, 1308.5353.
[7] R. J. Brunner,et al. Sparse representation of photometric redshift probability density functions: preparing for petascale astronomy , 2014, 1404.6442.
[8] J. Frieman,et al. Photometric Redshift Error Estimators , 2007, 0711.0962.
[9] Karl Glazebrook,et al. The WiggleZ Dark Energy Survey: survey design and first data release , 2009, 0911.4246.
[10] Y. Wadadekar. Estimating Photometric Redshifts Using Support Vector Machines , 2004, astro-ph/0412005.
[11] Stefan Hilbert,et al. COSMIC SHEAR RESULTS FROM THE DEEP LENS SURVEY. I. JOINT CONSTRAINTS ON ΩM AND σ8 WITH A TWO-DIMENSIONAL ANALYSIS , 2012, 1210.2732.
[12] Nicholas M. Ball,et al. Incorporating photometric redshift probability density information into real-space clustering measurements , 2009, 0903.3121.
[13] S. Gwyn,et al. The CFHT Legacy Survey: stacked images and catalogs , 2011, 1101.1084.
[14] Tony R. Martinez,et al. Turning Bayesian model averaging into Bayesian model combination , 2011, The 2011 International Joint Conference on Neural Networks.
[15] Astronomy,et al. Photometric Redshift Estimation Using Spectral Connectivity Analysis , 2009, 0906.0995.
[16] R. J. Assef,et al. Low Resolution Spectral Templates for AGNs and Galaxies , 2009, 1004.5415.
[17] A. Kinney,et al. Template ultraviolet to near-infrared spectra of star-forming galaxies and their application to K-corrections , 1996 .
[18] Huan Lin,et al. Estimating the redshift distribution of photometric galaxy samples , 2008 .
[19] R. J. Brunner,et al. TPZ: photometric redshift PDFs and ancillary information by using prediction trees and random forests , 2013, 1303.7269.
[20] Robert J. Brunner,et al. SOMz: photometric redshift PDFs with self organizing maps and random atlas , 2013, ArXiv.
[21] Harland W. Epps,et al. THE KECK LOW-RESOLUTION IMAGING SPECTROMETER , 1995 .
[22] B. Garilli,et al. Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.
[23] James E. Geach,et al. Unsupervised self-organized mapping: a versatile empirical tool for object selection, classification and redshift estimation in large surveys , 2011, 1110.0005.
[24] Pedro M. Domingos,et al. On the Optimality of the Simple Bayesian Classifier under Zero-One Loss , 1997, Machine Learning.
[25] N. Benı́tez. Bayesian Photometric Redshift Estimation , 1998, astro-ph/9811189.
[26] G. Zamorani,et al. The Zurich Extragalactic Bayesian Redshift Analyzer and its first application: COSMOS , 2006 .
[27] Scott Croom,et al. The WiggleZ Dark Energy Survey: mapping the distance-redshift relation with baryon acoustic oscillations , 2011, 1108.2635.
[28] M. J. Way,et al. Can Self-Organizing Maps Accurately Predict Photometric Redshifts? , 2012 .
[29] Anthony H. Gonzalez,et al. LOW-RESOLUTION SPECTRAL TEMPLATES FOR ACTIVE GALACTIC NUCLEI AND GALAXIES FROM 0.03 TO 30 μm , 2010 .
[30] Leonard E. Trigg,et al. Technical Note: Naive Bayes for Regression , 2000, Machine Learning.
[31] J. Newman,et al. EXTENDED PHOTOMETRY FOR THE DEEP2 GALAXY REDSHIFT SURVEY: A TESTBED FOR PHOTOMETRIC REDSHIFT EXPERIMENTS , 2012, 1210.2405.
[32] E. al.,et al. The Sloan Digital Sky Survey: Technical summary , 2000, astro-ph/0006396.
[33] A. Szalay,et al. Slicing Through Multicolor Space: Galaxy Redshifts from Broadband Photometry , 1995, astro-ph/9508100.
[34] K. Gorski,et al. HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.
[35] Ofer Lahav,et al. ANNz: Estimating Photometric Redshifts Using Artificial Neural Networks , 2004 .
[36] SLAC,et al. Sample variance in photometric redshift calibration: cosmological biases and survey requirements , 2011, 1109.5691.
[37] L. M. Sarro,et al. Automated supervised classification of variable stars - I. Methodology , 2007, 0711.0703.
[38] A. Connolly,et al. THE DEEP2 GALAXY REDSHIFT SURVEY: DESIGN, OBSERVATIONS, DATA REDUCTION, AND REDSHIFTS , 2012, 1203.3192.
[39] S. Gwyn,et al. THE CANADA–FRANCE–HAWAII TELESCOPE LEGACY SURVEY: STACKED IMAGES AND CATALOGS , 2012 .
[40] S. J. Lilly,et al. Precision photometric redshift calibration for galaxy–galaxy weak lensing , 2007, 0709.1692.
[41] Alexander S. Szalay,et al. Baryon Acoustic Oscillations in the Sloan Digital Sky Survey Data Release 7 Galaxy Sample , 2009, 0907.1660.
[42] Leo Breiman,et al. Random Forests , 2001, Machine Learning.
[43] D. Schlegel,et al. Maps of Dust IR Emission for Use in Estimation of Reddening and CMBR Foregrounds , 1997, astro-ph/9710327.
[44] W. M. Wood-Vasey,et al. THE BARYON OSCILLATION SPECTROSCOPIC SURVEY OF SDSS-III , 2012, 1208.0022.
[45] Alexander S. Szalay,et al. Toward More Precise Photometric Redshifts: Calibration via CCD Photometry , 1997, astro-ph/9703058.
[46] David W. Hogg,et al. STAR–GALAXY CLASSIFICATION IN MULTI-BAND OPTICAL IMAGING , 2012, 1206.4306.
[47] Lior Rokach,et al. Ensemble-based classifiers , 2010, Artificial Intelligence Review.
[48] R. Trotta. Applications of Bayesian model selection to cosmological parameters , 2005, astro-ph/0504022.
[49] Robert J. Brunner,et al. Robust Machine Learning Applied to Astronomical Data Sets. III. Probabilistic Photometric Redshifts for Galaxies and Quasars in the SDSS and GALEX , 2008, 0804.3413.
[50] Teuvo Kohonen,et al. The self-organizing map , 1990 .
[51] Manda Banerji,et al. A comparison of six photometric redshift methods applied to 1.5 million luminous red galaxies , 2008, 0812.3831.
[52] D. Weedman,et al. Colors and magnitudes predicted for high redshift galaxies , 1980 .
[53] Wei-Yin Loh,et al. Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..
[54] S. Baumont,et al. A new method to improve photometric redshift reconstruction - Applications to the Large Synoptic Survey Telescope , 2013, 1301.3010.
[55] R. Nichol,et al. The clustering of galaxies in the SDSS-III Baryon Oscillation Spectroscopic Survey: cosmological constraints from the full shape of the clustering wedges , 2013, 1303.4396.
[56] D. Schlegel,et al. Maps of Dust Infrared Emission for Use in Estimation of Reddening and Cosmic Microwave Background Radiation Foregrounds , 1998 .