An InGaN-Based Solar Cell Including Dual InGaN/GaN Multiple Quantum Wells

An InGaN/GaN solar cell including a dual multiple quantum wells (MQWs) structure is investigated. It shows an obvious advantage over the conventional InGaN/GaN cell, which only contains a single MQWs structure. Because the short current density (JSC) increases, the 1 sun power conversion efficiency significantly improves from 0.62% (single MQWs cell) to 1.02% (dual MQWs cell). From the measurement of EQE and PL spectra, the enhancement of effective photoelectric response within the solar spectrum mainly contributes to the high device performance, due to the introduced upper MQWs of higher In content.

[1]  The Effect of 3-MeV Proton Irradiation on the Performance of InGaN/GaN MQWs Solar Cells , 2014, IEEE Photonics Technology Letters.

[2]  John E. Bowers,et al.  High-performance broadband optical coatings on InGaN/GaN solar cells for multijunction device integration , 2014 .

[3]  Daniel D. Koleske,et al.  Influence of barrier thickness on the performance of InGaN/GaN multiple quantum well solar cells , 2012 .

[4]  Md. Rafiqul Islam,et al.  Recent advances in InN‐based solar cells: status and challenges in InGaN and InAlN solar cells , 2010 .

[5]  Daniel D. Koleske,et al.  GaN decomposition in H2 and N2 at MOVPE temperatures and pressures , 2001 .

[6]  W. Doolittle,et al.  Guidelines and limitations for the design of high-efficiency InGaN single-junction solar cells , 2014 .

[7]  James S. Speck,et al.  STRUCTURAL ORIGIN OF V-DEFECTS AND CORRELATION WITH LOCALIZED EXCITONIC CENTERS IN INGAN/GAN MULTIPLE QUANTUM WELLS , 1998 .

[8]  Aurelien J. F. David,et al.  Influence of polarization fields on carrier lifetime and recombination rates in InGaN-based light-emitting diodes , 2010 .

[9]  D. Chi,et al.  Effects of annealing on structural and optical properties of InGaN/GaN multiple quantum wells at emission wavelength of 490 nm , 2011 .

[10]  J. Yang,et al.  Optical and structural studies of dual wavelength InGaN/GaN tunnel-injection light emitting diodes grown by metalorganic chemical vapor deposition , 2013 .

[11]  J. Eymery,et al.  InGaN/GaN multiple‐quantum well heterostructures for solar cells grown by MOVPE: case studies , 2013 .

[12]  Hyun Ho Park,et al.  Investigation of properties of InGaN-based vertical-type solar cells with emission wavelengths in ultraviolet-blue-green regions , 2014 .

[13]  Eugene E. Haller,et al.  Superior radiation resistance of In1-xGaxN alloys: Full-solar-spectrum photovoltaic material system , 2003 .

[14]  H. Yokoyama,et al.  Barrier Thickness Dependence of Photovoltaic Characteristics of InGaN/GaN Multiple Quantum Well Solar Cells , 2012 .

[15]  James S. Speck,et al.  Carrier escape mechanism dependence on barrier thickness and temperature in InGaN quantum well solar cells , 2012 .

[16]  C. Bougerol,et al.  Effect of the quantum well thickness on the performance of InGaN photovoltaic cells , 2014, 1602.07227.

[17]  Klaus Lischka,et al.  Phase separation suppression in InGaN epitaxial layers due to biaxial strain , 2002 .

[18]  Junqiao Wu,et al.  When group-III nitrides go infrared: New properties and perspectives , 2009 .

[19]  Fernando Ponce,et al.  Microstructure and electronic properties of InGaN alloys , 2003 .

[20]  Akio Yamamoto,et al.  InGaN Solar Cells: Present State of the Art and Important Challenges , 2012, IEEE Journal of Photovoltaics.

[21]  David Peyrade,et al.  Photovoltaic Response of InGaN/GaN Multiple-Quantum Well Solar Cells , 2013 .

[22]  J. Lin,et al.  Realizing InGaN monolithic solar-photoelectrochemical cells for artificial photosynthesis , 2014 .

[23]  Zhibiao Hao,et al.  Theoretical study on critical thicknesses of InGaN grown on (0 0 0 1) GaN , 2011 .

[24]  J. Shim,et al.  Effect of indium composition on carrier escape in InGaN/GaN multiple quantum well solar cells , 2013 .