Outlier Detection using Projection Quantile Regression for Mass Spectrometry Data with Low Replication
暂无分享,去创建一个
HyungJun Cho | Soo-Heang Eo | Daewoo Pak | Jeea Choi | S. Eo | HyungJun Cho | Daewoo Pak | Jeea Choi
[1] F. E. Grubbs. Sample Criteria for Testing Outlying Observations , 1950 .
[2] Pin T. Ng,et al. Quantile smoothing splines , 1994 .
[3] R. Koenker. Quantile Regression: Name Index , 2005 .
[4] Joong-Won Shin,et al. Ultrahigh‐pressure dual online solid phase extraction/capillary reverse‐phase liquid chromatography/tandem mass spectrometry (DO‐SPE/cRPLC/MS/MS): A versatile separation platform for high‐throughput and highly sensitive proteomic analyses , 2007, Electrophoresis.
[5] Jae Won Lee,et al. OutlierD: an R package for outlier detection using quantile regression on mass spectrometry data , 2008, Bioinform..
[6] W. J. Dixon,et al. Analysis of Extreme Values , 1950 .
[7] R. Koenker,et al. Regression Quantiles , 2007 .
[8] R Core Team,et al. R: A language and environment for statistical computing. , 2014 .
[9] F. E. Grubbs. Procedures for Detecting Outlying Observations in Samples , 1969 .
[10] David B. Rorabacher,et al. Statistical treatment for rejection of deviant values: critical values of Dixon's "Q" parameter and related subrange ratios at the 95% confidence level , 1991 .
[11] W. R. Buckland,et al. Outliers in Statistical Data , 1979 .