High pressure water intrusion investigation of pure silica 1D channel AFI, MTW and TON-type zeolites

[1]  H. Gies,et al.  High-Pressure Water Intrusion Investigation of Pure Silica RUB-41 and S-SOD Zeolite Materials , 2011 .

[2]  J. Patarin,et al.  New insights in the formation of silanol defects in silicalite-1 by water intrusion under high pressure. , 2010, Physical chemistry chemical physics : PCCP.

[3]  J. Patarin,et al.  Investigation of the Energetic Performance of Pure Silica ITQ-4 (IFR) Zeolite under High Pressure Water Intrusion , 2010 .

[4]  J. Patarin,et al.  Water intrusion in mesoporous silicalite-1: An increase of the stored energy , 2009 .

[5]  J. Patarin,et al.  Pure silica chabazite molecular spring: a structural study on water intrusion-extrusion processes. , 2008, The journal of physical chemistry. B.

[6]  A. Fuchs,et al.  The effect of local defects on water adsorption in silicalite-1 zeolite: a joint experimental and molecular simulation study. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[7]  J. Patarin,et al.  The Pure Silica Chabazite: A High Volume Molecular Spring at Low Pressure for Energy Storage , 2007 .

[8]  A. Fuchs,et al.  Water condensation in hydrophobic nanopores. , 2005, Angewandte Chemie.

[9]  A. Myers Characterization of nanopores by standard enthalpy and entropy of adsorption of probe molecules , 2004 .

[10]  T. Ohsuna,et al.  Incommensurate modulation in the microporous silica SSZ-24. , 2002, Chemistry.

[11]  T. Ohsuna,et al.  Zeolite syntheses using linear diquats of varying length in fluoride media. The synthesis of ITQ-8, ITQ-10, ITQ-14 and high silica Nu-87 , 2002 .

[12]  G. Vigier,et al.  Dissipative water intrusion in hydrophobic MCM-41 type materials. , 2002, Chemical communications.

[13]  J. Patarin,et al.  Energetics: a new field of applications for hydrophobic zeolites. , 2001, Journal of the American Chemical Society.

[14]  M. Vallet‐Regí,et al.  Use of Electron Microscopy and Microdiffraction for Zeolite Framework Comparison , 1997 .

[15]  Eroshenko,et al.  Study of Penetration of Water into Hydrophobized Porous Silicas , 1997, Journal of colloid and interface science.

[16]  Mark E. Davis,et al.  Synthesis and characterization of pure-silica and boron-substituted SSZ-24 using N(16) methylsparteinium bromide as structure-directing agent , 1994 .

[17]  D. Louër,et al.  Indexing of powder diffraction patterns for low-symmetry lattices by the successive dichotomy method , 1991 .

[18]  W. M. Meier,et al.  The synthesis and structure of SSZ-24, the silica analog of AIPO4-5 , 1991 .

[19]  B. Marler Silica-ZSM-22: synthesis and single crystal structure refinement , 1987 .

[20]  J. W. Visser A fully automatic program for finding the unit cell from powder data , 1969 .

[21]  E. W. Washburn Note on a Method of Determining the Distribution of Pore Sizes in a Porous Material. , 1921, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. Patarin,et al.  Les systèmes hétérogènes « eau-zéolithe hydrophobe »: de nouveaux ressorts moléculaires , 2002 .