Regenerative steady-state simulation of discrete-event systems
暂无分享,去创建一个
[1] Sلأren Asmussen,et al. Applied Probability and Queues , 1989 .
[2] P. Glynn,et al. Likelihood ratio gradient estimation for stochastic recursions , 1995, Advances in Applied Probability.
[3] A. W. Kemp,et al. Applied Probability and Queues , 1989 .
[4] P. Haas. On simulation output analysis for generalized semi-markov processes , 1999 .
[5] Peter W. Glynn,et al. Can the regenerative method be applied to discrete-event simulation? , 1999, WSC '99.
[6] Gerald S. Shedler. Regenerative Stochastic Simulation , 1992 .
[7] D. Iglehart. Simulating stable stochastic systems, V: Comparison of ratio estimators , 1975 .
[8] P. Haas,et al. Regenerative generalized semi-markov processes , 1987 .
[9] Paul Bratley,et al. A guide to simulation (2nd ed.) , 1986 .
[10] Upendra Dave,et al. Applied Probability and Queues , 1987 .
[11] Ronald W. Wolff,et al. Stochastic Modeling and the Theory of Queues , 1989 .
[12] G. S. Shedler,et al. Regeneration and Networks of Queues , 1986 .
[13] Peter W. Glynn,et al. Likelihood ratio gradient estimation for stochastic systems , 1990, CACM.
[14] Averill M. Law,et al. Simulation Modeling and Analysis , 1982 .
[15] Richard L. Tweedie,et al. Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.
[16] Paul Bratley,et al. A guide to simulation , 1983 .
[17] W GlynnPeter,et al. Regenerative steady-state simulation of discrete-event systems , 2001 .
[18] U. Grenander,et al. Statistical analysis of stationary time series , 1957 .
[19] P. Glynn,et al. Simulation output analysis for general state space Markov chains , 1982 .
[20] P. Glynn,et al. Accelerated regeneration for markov chain simulations , 1995 .
[21] H. Robbins,et al. Moments of Randomly Stopped Sums , 1965 .
[22] B. Schmeiser,et al. Optimal mean-squared-error batch sizes , 1995 .
[23] Dénes König,et al. Verallgemeinerungen der Erlangschen und Engsetschen Formeln : Eine Methode in der Bedienungstheorie , 1967 .
[24] W.,et al. Conditions for the Applicability of the Regenerative Method* , 1993 .
[25] Svante Janson,et al. Renewal Theory for $M$-Dependent Variables , 1983 .
[26] P. Glynn,et al. A joint central limit theorem for the sample mean and regenerative variance estimator , 1987 .
[27] Ward Whitt,et al. Continuity of Generalized Semi-Markov Processes , 1980, Math. Oper. Res..
[28] L. D. Fossett. Simulating generalized semi-Markov processes , 1979 .
[29] Peter W. Glynn,et al. Derandomizing Variance Estimators , 1999, Oper. Res..
[30] Philip Heidelberger,et al. Bias Properties of Budget Constrained Simulations , 1990, Oper. Res..
[31] D. Burman. Insensitivity in queueing systems , 1980, Advances in Applied Probability.
[32] U. Grenander,et al. Statistical analysis of stationary time series , 1958 .
[33] E. Nummelin. General irreducible Markov chains and non-negative operators: List of symbols and notation , 1984 .
[34] P. Glynn,et al. Notes: Conditions for the Applicability of the Regenerative Method , 1993 .
[35] P. Glynn. A GSMP formalism for discrete event systems , 1989, Proc. IEEE.
[36] P. Glynn. Some topics in regenerative steady-state simulation , 1994 .
[37] P. Heidelberger,et al. A Renewal Theoretic Approach to Bias Reduction in Regenerative Simulations , 1982 .