Distributions of local electrochemistry in heterogeneous microstructures of solid oxide fuel cells using high-performance computations

[1]  Gregory A. Hackett,et al.  Quantitative Analysis of Multi-Scale Heterogeneities in Complex Electrode Microstructures , 2020, Journal of The Electrochemical Society.

[2]  K. Berent,et al.  A Three-Dimensional Numerical Assessment of Heterogeneity Impact on a Solid Oxide Fuel Cell’s Anode Performance , 2018, Catalysts.

[3]  Gregory A. Hackett,et al.  An efficient approach for prediction of Warburg-type resistance under working currents , 2018, International Journal of Hydrogen Energy.

[4]  N. Brandon,et al.  A novel approach for the quantification of inhomogeneous 3D current distribution in fuel cell electrodes , 2018, Journal of Power Sources.

[5]  Gregory A. Hackett,et al.  Mesoscale characterization of local property distributions in heterogeneous electrodes , 2018 .

[6]  Gregory A. Hackett,et al.  Performance Degradation Predictions Based on Microstructural Evolution Due to Grain Coarsening Effects in Solid Oxide Fuel Cell Electrodes , 2018 .

[7]  I. Celik,et al.  Modified Butler-Volmer Type Model Which Accounts for Triple and Double Phase Boundary Reaction Pathways , 2017 .

[8]  Gregory A Hackett,et al.  Towards Quantification of Local Electrochemical Parameters in Microstructures of Solid Oxide Fuel Cell Electrodes using High Performance Computations , 2017 .

[9]  Gregory A. Hackett,et al.  A Method for Quantitative 3D Mesoscale Analysis of Solid Oxide Fuel Cell Microstructures Using Xe-plasma Focused Ion Beam (PFIB) Coupled with SEM , 2017 .

[10]  David B. Menasche,et al.  Quantifying intermediate‐frequency heterogeneities of SOFC electrodes using X‐ray computed tomography , 2017 .

[11]  A. Heuer,et al.  Long‐term microstructural changes in solid oxide fuel cell anodes: 3D reconstruction , 2017 .

[12]  William M. Harris,et al.  Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices , 2016 .

[13]  H. Iwai,et al.  Chromium poisoning in (La,Sr)MnO3 cathode: Three-dimensional simulation of a solid oxide fuel cell , 2016 .

[14]  M. Cantoni,et al.  Accessible triple-phase boundary length: A performance metric to account for transport pathways in heterogeneous electrochemical materials , 2016 .

[15]  Ralph Roskies,et al.  Bridges: a uniquely flexible HPC resource for new communities and data analytics , 2015, XSEDE.

[16]  Z. Jiao,et al.  Numerical Assessment of SOFC Anode Polarization with Microstructure Evolution , 2015 .

[17]  Wilson K. S. Chiu,et al.  Determining the representative volume element size for three-dimensional microstructural material characterization. Part 1: Predictive models , 2015 .

[18]  Wilson K. S. Chiu,et al.  Determining the representative volume element size for three-dimensional microstructural material characterization. Part 2: Application to experimental data , 2015 .

[19]  P. S. Jørgensen,et al.  Triple phase boundary specific pathway analysis for quantitative characterization of solid oxide cell electrode microstructure , 2015 .

[20]  P. S. Jørgensen,et al.  On the accuracy of triple phase boundary lengths calculated from tomographic image data , 2014 .

[21]  Francois L. E. Usseglio-Viretta,et al.  3D phase mapping of solid oxide fuel cell YSZ/Ni cermet at the nanoscale by holographic X-ray nanotomography , 2013 .

[22]  Surya R. Kalidindi,et al.  Morphological Analyses of Polymer Electrolyte Fuel Cell Electrodes with Nano‐Scale Computed Tomography Imaging , 2013 .

[23]  M. Saito,et al.  Effect of Composition Ratio of Ni‐YSZ Anode on Distribution of Effective Three‐Phase Boundary and Power Generation Performance , 2013 .

[24]  Jun Wang,et al.  Three-dimensional reconstruction and analysis of an entire solid oxide fuel cell by full-field transmission X-ray microscopy , 2013 .

[25]  William M. Harris,et al.  Flexible multiphysics simulation of porous electrodes: Conformal to 3D reconstructed microstructures , 2013 .

[26]  B. Münch,et al.  The influence of constrictivity on the effective transport properties of porous layers in electrolysis and fuel cells , 2013, Journal of Materials Science.

[27]  Y. K. Chen-Wiegart,et al.  3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography , 2012 .

[28]  Moses Ender,et al.  Representative volume element size for accurate solid oxide fuel cell cathode reconstructions from focused ion beam tomography data , 2012 .

[29]  Jin-Young Kim,et al.  Anode microstructural change upon long-term operation for the cathode-supported tubular-type SOFC , 2012 .

[30]  Ellen Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: I. Performance quantification , 2012 .

[31]  E. Ivers-Tiffée,et al.  3D finite element model for reconstructed mixed-conducting cathodes: II. Parameter sensitivity analysis , 2012 .

[32]  N. Shikazono,et al.  Microstructural Change of Ni–GDC Cermet Anode in the Electrolyte‐supported Disk‐type SOFC upon Daily Start‐up and Shout‐down Operations , 2012 .

[33]  F. Prinz,et al.  Nanostructured Platinum Catalysts by Atomic‐Layer Deposition for Solid‐Oxide Fuel Cells , 2012 .

[34]  Jan Van herle,et al.  Three-dimensional microstructural changes in the Ni-YSZ solid oxide fuel cell anode during operation , 2012 .

[35]  S. Litster,et al.  Resolving the Three‐Dimensional Microstructure of Polymer Electrolyte Fuel Cell Electrodes using Nanometer‐Scale X‐ray Computed Tomography , 2012 .

[36]  P. Bleuet,et al.  Characterisation of Solid Oxide Fuel Cell Ni–8YSZ substrate by synchrotron X-ray nano-tomography: from 3D reconstruction to microstructure quantification , 2012 .

[37]  K. Gerdes,et al.  Long-Term Stability of SOFC Composite Cathode Activated by Electrocatalyst Infiltration , 2012 .

[38]  V. Dravid,et al.  Effect of Firing Temperature on LSM-YSZ Composite Cathodes: A Combined Three-Dimensional Microstructure and Impedance Spectroscopy Study , 2012 .

[39]  Nobuhide Kasagi,et al.  Quantitative Characterization of SOFC Nickel-YSZ Anode Microstructure Degradation Based on Focused-Ion-Beam 3D-Reconstruction Technique , 2012 .

[40]  H. Iwai,et al.  Three-Dimensional Simulation of SOFC Anode Polarization Characteristics Based on Sub-Grid Scale Modeling of Microstructure , 2012 .

[41]  Q. Cai,et al.  Investigation of the active thickness of solid oxide fuel cell electrodes using a 3D microstructure model , 2011 .

[42]  S. Dillon,et al.  The Orientation Distributions of Lines, Surfaces, and Interfaces around Three‐Phase Boundaries in Solid Oxide Fuel Cell Cathodes , 2011 .

[43]  S. Gamble Fabrication–microstructure–performance relationships of reversible solid oxide fuel cell electrodes–review , 2011 .

[44]  P. Pommier,et al.  3D Microstructural characterization of a solid oxide fuel cell anode reconstructed by focused ion be , 2011 .

[45]  S. Barnett,et al.  Linking the microstructure, performance and durability of Ni-yttria-stabilized zirconia solid oxide fuel cell anodes using three-dimensional focused ion beam–scanning electron microscopy imaging , 2011 .

[46]  Q. Cai,et al.  Modelling the 3D microstructure and performance of solid oxide fuel cell electrodes: Computational parameters , 2011 .

[47]  Piero Pianetta,et al.  Comparison of SOFC cathode microstructure quantified using X-ray nanotomography and focused ion beam scanning electron microscopy , 2011 .

[48]  Hiroshi Iwai,et al.  Quantitative evaluation of solid oxide fuel cell porous anode microstructure based on focused ion be , 2011 .

[49]  N. Shikazono,et al.  Evaluation of SOFC anode polarization simulation using three-dimensional microstructures reconstructed by FIB tomography , 2011 .

[50]  N. Shikazono,et al.  Three-dimensional numerical analysis of mixed ionic and electronic conducting cathode reconstructed by focused ion beam scanning electron microscope , 2011 .

[51]  S. Barnett,et al.  Impact of pore microstructure evolution on polarization resistance of Ni-Yttria-stabilized zirconia , 2011 .

[52]  Ying Xiong,et al.  Analysis of the three-dimensional microstructure of a solid-oxide fuel cell anode using nano X-ray tomography , 2011 .

[53]  B. Ingram,et al.  Microstructural Degradation of ( La , Sr ) MnO3 ∕ YSZ Cathodes in Solid Oxide Fuel Cells with Uncoated E-Brite Interconnects , 2011 .

[54]  Nigel P. Brandon,et al.  Microstructural analysis of a solid oxide fuel cell anode using focused ion beam techniques coupled with electrochemical simulation , 2010 .

[55]  P. Shearing,et al.  Analysis of triple phase contact in Ni–YSZ microstructures using non-destructive X-ray tomography with synchrotron radiation , 2010 .

[56]  Francesco De Carlo,et al.  Nondestructive Nanoscale 3D Elemental Mapping and Analysis of a Solid Oxide Fuel Cell Anode , 2010 .

[57]  Nobuhide Kasagi,et al.  Numerical Assessment of SOFC Anode Polarization Based on Three-Dimensional Model Microstructure Reconstructed from FIB-SEM Images , 2010 .

[58]  Jin-Young Kim,et al.  Performance Deterioration of Ni-YSZ Anode Induced by Electrochemically Generated Steam in Solid Oxide Fuel Cells , 2010 .

[59]  Scott A. Barnett,et al.  Effect of composition of (La0.8Sr0.2MnO3–Y2O3-stabilized ZrO2) cathodes: Correlating three-dimensional microstructure and polarization resistance , 2010 .

[60]  Hiroshi Iwai,et al.  Quantification of SOFC anode microstructure based on dual beam FIB-SEM technique , 2010 .

[61]  B. Ingram,et al.  The Effect of Chromium Oxyhydroxide on Solid Oxide Fuel Cells , 2010 .

[62]  P. Shearing,et al.  Characterization of SOFC Electrode Microstructure Using Nano-Scale X-ray Computed Tomography and Focused Ion Beam Techniques: a Comparative Study , 2009 .

[63]  Derek Gaston,et al.  MOOSE: A parallel computational framework for coupled systems of nonlinear equations , 2009 .

[64]  E. Ivers-Tiffée,et al.  3D Electrode Microstructure Reconstruction and Modelling , 2009 .

[65]  Marcio Gameiro,et al.  Quantitative three-dimensional microstructure of a solid oxide fuel cell cathode , 2009 .

[66]  Jon G. Pharoah,et al.  Computation of TPB length, surface area and pore size from numerical reconstruction of composite solid oxide fuel cell electrodes , 2009 .

[67]  W. Chiu,et al.  Non invasive, multiscale 3D X-Ray characterization of porous functional composites and membranes, with resolution from MM to sub 50 NM , 2009 .

[68]  Boris Iwanschitz,et al.  Fundamental mechanisms limiting solid oxide fuel cell durability , 2008 .

[69]  E. Wachsman,et al.  Three-Dimensional Reconstruction of Porous LSCF Cathodes , 2007 .

[70]  Hongtao Cui,et al.  X-ray computed tomography in Zernike phase contrast mode at 8 keV with 50-nm resolution using Cu rotating anode X-ray source , 2007 .

[71]  Dennis Y.C. Leung,et al.  Micro-scale modelling of solid oxide fuel cells with micro-structurally graded electrodes , 2007 .

[72]  E. Ivers-Tiffée,et al.  3D-Modelling and Performance Evaluation of Mixed Conducting (MIEC) Cathodes , 2007 .

[73]  Jon M. Hiller,et al.  Three-dimensional reconstruction of a solid-oxide fuel-cell anode , 2006, Nature materials.

[74]  S. R. Pakalapati A new reduced order model for solid oxide fuel cells , 2006 .

[75]  R. O’Hayre,et al.  Fuel Cell Fundamentals , 2005 .

[76]  S. Singhal,et al.  Advanced anodes for high-temperature fuel cells , 2004, Nature materials.

[77]  Jürgen Fleig,et al.  On the width of the electrochemically active region in mixed conducting solid oxide fuel cell cathodes , 2002 .

[78]  Kuan-Zong Fung,et al.  The Effect of Porous Composite Electrode Structure on Solid Oxide Fuel Cell Performance I. Theoretical Analysis , 1997 .

[79]  Stuart B. Adler,et al.  Electrode Kinetics of Porous Mixed‐Conducting Oxygen Electrodes , 1996 .

[80]  Hans-Peter Kriegel,et al.  A Density-Based Algorithm for Discovering Clusters in Large Spatial Databases with Noise , 1996, KDD.

[81]  高橋 武彦,et al.  Science and technology of ceramic fuel cells , 1995 .