Three-dimensional mhd simulation of coronal mass ejections

Abstract A parallel adaptive mesh refinement (AMR) scheme for solving the governing equations of ideal magnetohydrodynamics (MHD) in three space dimensions is used herein to investigate the structure and evolution of a coronal mass ejection (CME) propagating from the solar surface at 1 R s out into the inner heliosphere to distances approaching 1 2 AU . The highly parallelized solution algorithm makes use of modern finite-volume numerical methodology to provide a combination of high solution accuracy and computational robustness. Numerical results are discussed for a CME driven by local plasma density enhancement with a simplified representation of the background solar wind. The latter approximates the interplanetary magnetic field and two-stream nature of the solar wind for conditions near solar minimum. The predicted evolution and structure of the CME are described. The results demonstrate the potential of the parallel adaptive MHD model for enhancing the understanding of coronal physics and solar wind plasma processes.

[1]  R. Kopp,et al.  Gas-magnetic field interactions in the solar corona , 1971 .

[2]  B. Low Eruptive solar magnetic fields , 1981 .

[3]  I. Bohachevsky,et al.  Finite difference method for numerical computation of discontinuous solutions of the equations of fluid dynamics , 1959 .

[4]  P. Colella,et al.  Local adaptive mesh refinement for shock hydrodynamics , 1989 .

[5]  David J. McComas,et al.  Ulysses' return to the slow solar wind , 1998 .

[6]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[7]  T. Linde,et al.  A three-dimensional adaptive multifluid MHD model of the heliosphere. , 1998 .

[8]  Philip L. Roe,et al.  An upwind scheme for magnetohydrodynamics , 1995 .

[9]  A. Hundhausen,et al.  Disruption of a coronal streamer by an eruptive prominence and coronal mass ejection , 1986 .

[10]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[11]  T. Hirayama Theoretical model of flares and prominences , 1974 .

[12]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[13]  P. Roe,et al.  On Godunov-type methods near low densities , 1991 .

[14]  Dalton D. Schnack,et al.  Dynamical evolution of a solar coronal magnetic field arcade , 1988 .

[15]  S. Wu,et al.  A Self-Consistent Numerical Magnetohydrodynamic (MHD) Model of Helmet Streamer and Flux-Rope Interactions: Initiation and Propagation of Coronal Mass Ejections (CMEs) , 1997 .

[16]  Dinshaw S. Balsara,et al.  Notes on the Eigensystem of Magnetohydrodynamics , 1996, SIAM J. Appl. Math..

[17]  B. Low Solar activity and the corona , 1996 .

[18]  B. Low EQUILIBRIUM AND DYNAMICS OF CORONAL MAGNETIC FIELDS , 1990 .

[19]  D. D. Zeeuw,et al.  An adaptively refined Cartesian mesh solver for the Euler equations , 1993 .

[20]  R. Lionello Magnetohydrodynamics of Solar Coronal Plasmas in Cylindrical Geometry , 1998 .

[21]  P. Martens,et al.  Magnetic Fields in Quiescent Prominences , 1990 .

[22]  Timothy J. Barth,et al.  Recent developments in high order K-exact reconstruction on unstructured meshes , 1993 .

[23]  Kenneth G. Powell,et al.  AN APPROXIMATE RIEMANN SOLVER FOR MAGNETOHYDRODYNAMICS (That Works in More than One Dimension) , 1994 .

[24]  M. Dryer Multidimensional, magnetohydrodynamic simulation of solar-generated disturbances: space weather forecasting of geomagnetic storms. , 1998 .

[25]  R. Kopp,et al.  Magnetic reconnection in the corona and the loop prominence phenomenon , 1976 .

[26]  B. V. Leer,et al.  Towards the ultimate conservative difference scheme V. A second-order sequel to Godunov's method , 1979 .

[27]  S. Suess,et al.  Volumetric heating in coronal streamers , 1996 .

[28]  Bram van Leer,et al.  Design of Optimally Smoothing Multi-Stage Schemes for the Euler Equations , 1989 .

[29]  J. Schmelz,et al.  The Many Faces of the Sun , 1999 .

[30]  A. Hewish Physics of the inner Heliosphere: Vol. 1, Schwenn R. and Marsch E. (eds), 1990, 282 pp., Springer, Berlin, DM 118 , 1992 .

[31]  A. Poland,et al.  Coronal activity below 2 solar radii - 1980 February 15-17 , 1981 .

[32]  S. Wu,et al.  Induced mass and wave motions in the lower solar atmosphere. I. Effects of shear motion of flux tubes , 1983 .

[33]  Quentin F. Stout,et al.  A parallel solution-adaptive scheme for ideal magnetohydrodynamics , 1999 .

[34]  S. Wu,et al.  A Magnetohydrodynamic Description of Coronal Helmet Streamers Containing a Cavity , 1998 .

[35]  S. Suess,et al.  Global model of the corona with heat and momentum addition , 1998 .

[36]  B. Low Magnetohydrodynamic processes in the solar corona: Flares, coronal mass ejections, and magnetic helicity* , 1994 .

[37]  R. LeVeque,et al.  An Adaptive Cartesian Mesh Algorithm for the Euler Equations in Arbitrary Geometries , 1989 .

[38]  S. Wu,et al.  Magnetohydrodynamic models of coronal transients in the meridional plane. II - Simulation of the coronal transient of 1973 August 21 , 1979 .

[39]  Jon A. Linker,et al.  Disruption of Coronal Magnetic Field Arcades , 1994 .

[40]  Philip L. Roe,et al.  Adaptive-mesh algorithms for computational fluid dynamics , 1993 .

[41]  B. Low Evolving force-free magnetic fields. I - The development of the preflare stage , 1977 .

[42]  P. Roe,et al.  A Solution-Adaptive Upwind Scheme for Ideal Magnetohydrodynamics , 1999 .

[43]  J. J. Quirk,et al.  An adaptive grid algorithm for computational shock hydrodynamics , 1991 .

[44]  J. Linker,et al.  Disruption of a helmet streamer by photospheric shear , 1995 .

[45]  James J. Quirk,et al.  A Parallel Adaptive Mesh Refinement Algorithm , 1993 .