ℝ‐trees and laminations for free groups I: algebraic laminations
暂无分享,去创建一个
[1] Michael Handel,et al. The Tits alternative for Out(Fn) II: A Kolchin type theorem , 1997 .
[2] Philippe Narbel. The boundary of Iterated Morphisms on Free Semi-Groups , 1996, Int. J. Algebra Comput..
[3] Pavel Zorin-Kranich,et al. Habilitationsschrift , 1970 .
[4] Michael Handel,et al. The Tits alternative for Out (F~n) I: Dynamics of exponentially-growing automorphisms , 1997 .
[5] Reiner Martin. Non-uniquely ergodic foliations of thin type , 1997, Ergodic Theory and Dynamical Systems.
[6] M. Lustig,et al. $\R$-trees and laminations for free groups III: Currents and dual $\R$-tree metrics , 2008 .
[7] C. Mauduit,et al. Substitutions in dynamics, arithmetics, and combinatorics , 2002 .
[8] W. Lickorish. AUTOMORPHISMS OF SURFACES AFTER NIELSEN AND THURSTON (London Mathematical Society Student Texts 9) , 1990 .
[9] Gilbert Levitt,et al. An index for counting fixed points of automorphisms of free groups , 1998 .
[10] Ilya Kapovich. The Frequency Space of a Free Group , 2005, Int. J. Algebra Comput..
[11] A. Fathi,et al. Travaux de Thurston sur les surfaces : séminaire Orsay , 1991 .
[12] M. Lustig,et al. IRREDUCIBLE AUTOMORPHISMS OF $F_{n}$ HAVE NORTH–SOUTH DYNAMICS ON COMPACTIFIED OUTER SPACE , 2003, Journal of the Institute of Mathematics of Jussieu.
[13] M. Lustig,et al. ℝ‐trees and laminations for free groups III: currents and dual ℝ‐tree metrics , 2007, 0706.0677.
[14] F. Beaufils,et al. FRANCE , 1979, The Lancet.
[15] Pierre Arnoux,et al. Fractal representation of the attractive lamination of an automorphism of the free group , 2006 .
[16] É. Ghys,et al. Sur Les Groupes Hyperboliques D'Apres Mikhael Gromov , 1990 .
[17] Ilya Kapovich. Currents on free groups , 2004, math/0412128.
[18] Daryl Cooper,et al. Automorphisms of free groups have finitely generated fixed point sets , 1987 .