Molecular dynamics simulations and generalized Lenard-Balescu calculations of electron-ion temperature equilibration in plasmas.
暂无分享,去创建一个
David F Richards | James N Glosli | Michael S Murillo | Christian R Scullard | L. Benedict | F. Graziani | S. Khairallah | M. Murillo | J. Castor | J. Glosli | P. Grabowski | D. Richards | M. Surh | H. Whitley | C. Scullard | Lorin X Benedict | Frank R Graziani | Michael P Surh | John I Castor | Saad A Khairallah | Heather D Whitley | Paul E Grabowski | David Michta | D. Michta
[1] G. Dimonte,et al. Correlation effects on the temperature-relaxation rates in dense plasmas. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[2] 一丸 節夫. Statistical plasma physics , 1992 .
[3] S Lebedev,et al. The Physics of Inertial Fusion , 2004 .
[4] M. Murillo,et al. Pair-distribution functions of two-temperature two-mass systems: comparison of molecular dynamics, classical-map hypernetted chain, quantum Monte Carlo, and Kohn-Sham calculations for dense hydrogen. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.
[5] M. Murillo,et al. Dense plasma temperature equilibration in the binary collision approximation. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[6] I. R. Mcdonald,et al. Thermal relaxation in a strongly coupled two-temperature plasma , 1983 .
[7] G. Torrie,et al. Statistical mechanics of dense ionized matter. VII. Equation of state and phase separation of ionic mixtures in a uniform background , 1977 .
[8] D. Gericke. Kinetic approach to temperature relaxation in dense plasmas , 2005 .
[9] T. Bornath,et al. Energy relaxation in dense, strongly coupled two-temperature plasmas. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.
[10] James N Glosli,et al. Beyond finite-size scaling in solidification simulations. , 2006, Physical review letters.
[11] David F Richards,et al. Molecular dynamics simulations of electron-ion temperature equilibration in an SF6 plasma. , 2009, Physical review letters.
[12] Edward I. Moses,et al. The National Ignition Facility: Ushering in a new age for high energy density science , 2009 .
[13] G. Kelbg. Theorie des Quanten‐Plasmas , 1963 .
[14] J. Kress,et al. Energy relaxation rates in dense hydrogen plasmas. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[15] R. Kosloff. Propagation Methods for Quantum Molecular Dynamics , 1994 .
[16] C. Deutsch,et al. Classical modelization of symmetry effects in the dense high-temperature electron gas , 1978 .
[17] A. A. Broyles,et al. Method for determining the thermodynamic properties of the quantum electron gas. , 1967 .
[18] Carlsson,et al. Electron liquid at any degeneracy. , 1986, Physical review. B, Condensed matter.
[19] B. Militzer,et al. Strong coupling and degeneracy effects in inertial confinement fusion implosions. , 2010, Physical review letters.
[20] G. G. Stokes. "J." , 1890, The New Yale Book of Quotations.
[21] C. Deutsch,et al. Temperature-dependent Coulomb interactions in hydrogenic systems , 1981 .
[22] R. London,et al. Molecular dynamics simulations of temperature equilibration in dense hydrogen. , 2008, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] R. London,et al. Large-scale molecular dynamics simulations of dense plasmas: The Cimarron Project , 2012 .
[24] J. Chihara. Unified description of metallic and neutral liquids and plasmas , 1991 .
[25] A. Fetter,et al. Quantum Theory of Many-Particle Systems , 1971 .
[26] Guy Dimonte,et al. Molecular-dynamics simulations of electron-ion temperature relaxation in a classical Coulomb plasma. , 2008, Physical review letters.
[27] Thomas Luu,et al. Effects of non-equilibrium particle distributions in deuterium-tritium burning , 2009 .
[28] J. Springer,et al. Integral equation solutions for the classical electron gas , 1973 .
[29] W. Ebeling,et al. IMPROVED KELBG POTENTIAL FOR CORRELATED COULOMB SYSTEMS , 2003 .
[30] Yousef Saad,et al. Iterative methods for sparse linear systems , 2003 .
[31] S. X. Hu,et al. Effects of electron-ion temperature equilibration on inertial confinement fusion implosions. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.
[32] Ericka Stricklin-Parker,et al. Ann , 2005 .
[33] F. Reif,et al. Fundamentals of Statistical and Thermal Physics , 1965 .
[34] S. Baalrud,et al. Transport coefficients in strongly coupled plasmas , 2012 .
[35] W. Ebeling,et al. Temperature-dependent quantum pair potentials and their application to dense partially ionized hydrogen plasmas. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.
[36] J. Hansen,et al. Thermal Conductivity of a Strongly Coupled Hydrogen Plasma , 1982 .
[37] W. Selke,et al. Monte Carlo and molecular dynamics of condensed matter systems , 1997 .
[38] Dean L. Preston,et al. Charged Particle Motion in a Highly Ionized Plasma , 2005 .
[39] I. R. Mcdonald,et al. Microscopic simulation of a strongly coupled hydrogen plasma , 1981 .
[40] M. Murillo,et al. Analysis of semi-classical potentials for molecular dynamics and Monte Carlo simulations of warm dense matter , 2007 .
[41] K. Ng. Hypernetted chain solutions for the classical one‐component plasma up to Γ=7000 , 1974 .
[42] P. Hohenberg,et al. Inhomogeneous Electron Gas , 1964 .
[43] W. Kohn,et al. Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .