Fourier analysis in combinatorial number theory

In this survey applications of harmonic analysis to combinatorial number theory are considered. Discussion topics include classical problems of additive combinatorics, colouring problems, higher-order Fourier analysis, theorems about sets of large trigonometric sums, results on estimates for trigonometric sums over subgroups, and the connection between combinatorial and analytic number theory. Bibliography: 162 titles.

[1]  L. J. Mordell,et al.  ON A SUM ANALOGOUS TO A GAUSS'S SUM , 1932 .

[2]  L. Schnirelmann,et al.  Über additive Eigenschaften von Zahlen , 1933 .

[3]  Paul Erdös,et al.  On Some Sequences of Integers , 1936 .

[4]  J. G. Corput Über Summen von Primzahlen und Primzahlquadraten , 1939 .

[5]  F. Behrend On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.

[6]  K. F. Roth On Certain Sets of Integers , 1953 .

[7]  W. Rudin Trigonometric Series with Gaps , 1960 .

[8]  R. A. Rankin,et al.  XXIV.—Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression , 1961, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.

[9]  Ye.A. Gorin,et al.  Fourier analysis on groups: Rudin, W., New York and London, 1962☆ , 1963 .

[10]  E. Szemerédi On sets of integers containing no four elements in arithmetic progression , 1969 .

[11]  Walter A. Deuber Partition Theorems for Abelian Groups , 1975, J. Comb. Theory, Ser. A.

[12]  E. Szemerédi Regular Partitions of Graphs , 1975 .

[13]  E. Szemerédi On sets of integers containing k elements in arithmetic progression , 1975 .

[14]  H. Furstenberg Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .

[15]  H. Furstenberg,et al.  An ergodic Szemerédi theorem for commuting transformations , 1978 .

[16]  D. Ornstein,et al.  The ergodic theoretical proof of Szemerédi's theorem , 1982 .

[17]  Endre Szemerédi,et al.  On sums and products of integers , 1983 .

[18]  Gerald Myerson,et al.  How Small Can a Sum of Roots of Unity Be , 1986 .

[19]  J. Bourgain,et al.  A szemerédi type theorem for sets of positive density inRk , 1986 .

[20]  D. R. Heath-Brown Integer Sets Containing No Arithmetic Progressions , 1987 .

[21]  Vojtech Rödl,et al.  On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.

[22]  Vojtech Rödl,et al.  Quantitative theorems for regular systems of equations , 1988, J. Comb. Theory, Ser. A.

[23]  Endre Szemerédi,et al.  Integer sets containing no arithmetic progressions , 1990 .

[24]  Kennan T. Smith,et al.  The uncertainty principle on groups , 1990 .

[25]  J. Bourgain A Tribute to Paul Erdős: On arithmetic progressions in sums of sets of integers , 1990 .

[26]  H. Furstenberg,et al.  A density version of the Hales-Jewett theorem , 1991 .

[27]  Imre Z. Ruzsa,et al.  Arithmetic progressions in sumsets , 1991 .

[28]  Hanno Lefmann On partition regular systems of equations , 1991, J. Comb. Theory, Ser. A.

[29]  I. E. Shparlinskii Estimates of Gaussian sums , 1991 .

[30]  G. Freiman,et al.  Integer Sum Sets Containing Long Arithmetic Progressions , 1992 .

[31]  P. Stevenhagen,et al.  Chebotarëv and his density theorem , 1996 .

[32]  Imre Z. Ruzsa,et al.  Generalized arithmetical progressions and sumsets , 1994 .

[33]  Roy Meshulam,et al.  On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.

[34]  R. Graham,et al.  Handbook of Combinatorics , 1995 .

[35]  Vitaly Bergelson,et al.  Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .

[36]  Melvyn B. Nathanson,et al.  Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .

[37]  György Elekes,et al.  On the number of sums and products , 1997 .

[38]  Melvyn B. Nathanson,et al.  On sums and products of integers , 1997 .

[39]  Y. Kohayakawa Szemerédi's regularity lemma for sparse graphs , 1997 .

[40]  W. T. Gowers,et al.  A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .

[41]  Sums and Products from a Finite Set of Real Numbers , 1998 .

[42]  Neil Hindman,et al.  Algebra in the Stone-Cech Compactification: Theory and Applications , 1998 .

[43]  Jean Bourgain,et al.  On Triples in Arithmetic Progression , 1999 .

[44]  Jean-Marc Deshouillers,et al.  Structure Theory of Set Addition , 2018, Astérisque.

[45]  Vitaly Bergelson,et al.  Set-polynomials and polynomial extension of the Hales-Jewett Theorem , 1999 .

[46]  I. Shparlinski,et al.  Character Sums with Exponential Functions and their Applications: Preliminaries , 1999 .

[47]  Imre Leader,et al.  Additive and Multiplicative Ramsey Theory in the Reals and the Rationals , 1999, J. Comb. Theory, Ser. A.

[48]  D. H. Brown,et al.  New bounds for Gauss sums derived from kth powers , 2000 .

[49]  Terence Tao,et al.  From rotating needles to stability of waves; emerging connections between combinatorics, analysis and PDE , 2000 .

[50]  V. Lev,et al.  On the distribution of exponential sums. , 2000 .

[51]  Terence Tao,et al.  Recent progress on the Kakeya conjecture , 2000 .

[52]  W. T. Gowers,et al.  A new proof of Szemerédi's theorem , 2001 .

[53]  B. Green Arithmetic progressions in sumsets , 2002 .

[54]  Ben Green,et al.  On arithmetic structures in dense sets of integers , 2002 .

[55]  Terence Tao,et al.  Restriction and Kakeya phenomena for finite fields , 2002 .

[56]  Mei-Chu Chang A polynomial bound in Freiman's theorem , 2002 .

[57]  T. Tao An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.

[58]  J. Bourgain,et al.  Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order , 2003 .

[59]  B. Green A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.

[60]  Ben Green,et al.  Roth's theorem in the primes , 2003 .

[61]  Imre Leader,et al.  Open Problems in Partition Regularity , 2003, Comb. Probab. Comput..

[62]  Ben Green Some Constructions In The Inverse Spectral Theory Of Cyclic Groups , 2003, Comb. Probab. Comput..

[63]  Terence Tao,et al.  A sum-product estimate in finite fields, and applications , 2003, math/0301343.

[64]  A. Leibman Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.

[65]  Todd Cochrane,et al.  An improved Mordell type bound for exponential sums , 2004 .

[66]  B. Green Spectral Structure of Sets of Integers , 2004 .

[67]  T. Tao,et al.  The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.

[68]  I. Shkredov On a Generalization of Szemerédi's Theorem , 2005, math/0503639.

[69]  T. Ziegler A non-conventional ergodic theorem for a nilsystem , 2002, Ergodic Theory and Dynamical Systems.

[70]  J. Bourgain,et al.  MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .

[71]  Ben Green,et al.  Finite field models in additive combinatories , 2004, BCC.

[72]  Bryna Kra,et al.  Nonconventional ergodic averages and nilmanifolds , 2005 .

[73]  Ilya D. Shkredov,et al.  On a problem of Gowers , 2006 .

[74]  Bryna Kra,et al.  Convergence of polynomial ergodic averages , 2005 .

[75]  József Solymosi,et al.  On the Number of Sums and Products , 2005 .

[76]  B. Green,et al.  Freiman's theorem in an arbitrary abelian group , 2005, math/0505198.

[77]  E. Szemerédi,et al.  Long Arithmetic Progressions in Sum‐Sets and the Number x‐Sum‐Free Sets , 2005 .

[78]  Jean Bourgain,et al.  Exponential sum estimates over subgroups ofZ*q,q arbitrary,q arbitrary , 2005 .

[79]  Jean Bourgain,et al.  Mordell's exponential sum estimate revisited , 2005 .

[80]  Jean Bourgain,et al.  Estimates on exponential sums related to the Diffie–Hellman Distributions , 2005 .

[81]  András Sárközy,et al.  On sums and products of residues modulo p , 2005 .

[82]  I. Shkredov Szemerédi's theorem and problems on arithmetic progressions , 2006 .

[83]  Tamar Ziegler,et al.  Universal characteristic factors and Furstenberg averages , 2004, math/0403212.

[84]  An application of a local version of Chang's theorem , 2006, math/0607668.

[85]  Neil Hindman,et al.  Multiplicative structures in additively large sets , 2006, J. Comb. Theory, Ser. A.

[86]  József Solymosi,et al.  Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.

[87]  Terence Tao A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..

[88]  E. Szemerédi,et al.  Finite and infinite arithmetic progressions in sumsets , 2006 .

[89]  Avi Wigderson,et al.  Extracting Randomness Using Few Independent Sources , 2006, SIAM J. Comput..

[90]  Илья Дмитриевич Шкредов Теорема Семереди и задачи об арифметических прогрессиях , 2006 .

[91]  Ben Green,et al.  QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.

[92]  Алексей Анатольевич Глибичук,et al.  Комбинаторные свойства множеств вычетов по простому модулю и задача Эрдeша - Грэхэма@@@Combinational properties of sets of residues modulo a prime and the Erdős - Graham problem , 2006 .

[93]  Jean Bourgain,et al.  Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .

[94]  J. Bourgain,et al.  Exponential sum estimates over subgroups and almost subgroups of $$ \mathbb{Z}_{Q}^{*} $$, where Q is composite with few prime factors , 2006 .

[95]  Ben Green,et al.  Montreal Lecture Notes on Quadratic Fourier Analysis , 2006 .

[96]  Derrick Hart,et al.  Sums and products in finite fields: an integral geometric viewpoint , 2007, 0705.4256.

[97]  I. Shkredov On sumsets of dissociated sets , 2007, 0712.1074.

[98]  M. Z. Garaev,et al.  THE SUM-PRODUCT ESTIMATE FOR LARGE SUBSETS OF PRIME FIELDS , 2007, 0706.0702.

[99]  I. Shkredov Examples of sets with large trigonometric sums , 2007 .

[100]  Shachar Lovett,et al.  Inverse conjecture for the gowers norm is false , 2007, Theory Comput..

[101]  T. Sanders Appendix to ‘Roth’s theorem on progressions revisited,’ by J. Bourgain , 2007, 0710.0642.

[102]  T. Schoen,et al.  Arithmetic progressions in sparse sumsets , 2007 .

[103]  S. Konyagin,et al.  Additive properties of product sets in fields of prime order , 2007 .

[104]  J. Bourgain,et al.  Some Arithmetical Applications of the Sum-Product Theorems in Finite Fields , 2007 .

[105]  Mei-Chu Chang,et al.  On a question of Davenport and Lewis and new character sum bounds in finite fields , 2008 .

[106]  Zhi-Wei Sun,et al.  A variant of Tao's method with application to restricted sumsets , 2008 .

[107]  M. Garaev,et al.  The equation x1x2=x3x4+λ in fields of prime order and applications , 2008 .

[108]  Enrico Bombieri,et al.  Roots of Polynomials in Subgroups of and Applications to Congruences , 2008 .

[109]  I. Shparlinski ON THE SOLVABILITY OF BILINEAR EQUATIONS IN FINITE FIELDS , 2007, Glasgow Mathematical Journal.

[110]  Terence Tao,et al.  Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.

[111]  T. Sanders,et al.  A Note on Freĭman's Theorem in Vector Spaces , 2006, Combinatorics, Probability and Computing.

[112]  Jean Bourgain,et al.  Roth’s theorem on progressions revisited , 2008 .

[113]  T. Sanders Additive structures in sumsets , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.

[114]  Ben Green,et al.  AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.

[115]  I. Shkredov On sets of large trigonometric sums , 2008 .

[116]  Jean Bourgain,et al.  Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .

[117]  T. Sanders Roth’s theorem in ℤ4n , 2008, 0807.5101.

[118]  A. Cauchy Oeuvres complètes: Recherches sur les nombres , 2009 .

[119]  Tim Austin On the norm convergence of non-conventional ergodic averages , 2008, Ergodic Theory and Dynamical Systems.

[120]  Ben Green,et al.  New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries , 2009 .

[121]  Norbert Hegyv'ari,et al.  Explicit constructions of extractors and expanders , 2012, 1206.1146.

[122]  Luca Trevisan,et al.  Gowers Uniformity, Influence of Variables, and PCPs , 2009, SIAM J. Comput..

[123]  Ben Green,et al.  An equivalence between inverse sumset theorems and inverse conjectures for the U3 norm , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.

[124]  W. T. Gowers,et al.  Rough Structure and Classification , 2010 .

[125]  A. Hales,et al.  Regularity and Positional Games , 1963 .

[126]  Terence Tao,et al.  The inverse conjecture for the Gowers norm over finite fields via the correspondence principle , 2008, 0810.5527.

[127]  József Solymosi,et al.  Sum-product Estimates in Finite Fields via Kloosterman Sums , 2010 .

[128]  M. Garaev,et al.  An Explicit Sum-Product Estimate in p , 2010 .