Fourier analysis in combinatorial number theory
暂无分享,去创建一个
[1] L. J. Mordell,et al. ON A SUM ANALOGOUS TO A GAUSS'S SUM , 1932 .
[2] L. Schnirelmann,et al. Über additive Eigenschaften von Zahlen , 1933 .
[3] Paul Erdös,et al. On Some Sequences of Integers , 1936 .
[4] J. G. Corput. Über Summen von Primzahlen und Primzahlquadraten , 1939 .
[5] F. Behrend. On Sets of Integers Which Contain No Three Terms in Arithmetical Progression. , 1946, Proceedings of the National Academy of Sciences of the United States of America.
[6] K. F. Roth. On Certain Sets of Integers , 1953 .
[7] W. Rudin. Trigonometric Series with Gaps , 1960 .
[8] R. A. Rankin,et al. XXIV.—Sets of Integers Containing not more than a Given Number of Terms in Arithmetical Progression , 1961, Proceedings of the Royal Society of Edinburgh. Section A. Mathematical and Physical Sciences.
[9] Ye.A. Gorin,et al. Fourier analysis on groups: Rudin, W., New York and London, 1962☆ , 1963 .
[10] E. Szemerédi. On sets of integers containing no four elements in arithmetic progression , 1969 .
[11] Walter A. Deuber. Partition Theorems for Abelian Groups , 1975, J. Comb. Theory, Ser. A.
[12] E. Szemerédi. Regular Partitions of Graphs , 1975 .
[13] E. Szemerédi. On sets of integers containing k elements in arithmetic progression , 1975 .
[14] H. Furstenberg. Ergodic behavior of diagonal measures and a theorem of Szemerédi on arithmetic progressions , 1977 .
[15] H. Furstenberg,et al. An ergodic Szemerédi theorem for commuting transformations , 1978 .
[16] D. Ornstein,et al. The ergodic theoretical proof of Szemerédi's theorem , 1982 .
[17] Endre Szemerédi,et al. On sums and products of integers , 1983 .
[18] Gerald Myerson,et al. How Small Can a Sum of Roots of Unity Be , 1986 .
[19] J. Bourgain,et al. A szemerédi type theorem for sets of positive density inRk , 1986 .
[20] D. R. Heath-Brown. Integer Sets Containing No Arithmetic Progressions , 1987 .
[21] Vojtech Rödl,et al. On subsets of abelian groups with no 3-term arithmetic progression , 1987, J. Comb. Theory, Ser. A.
[22] Vojtech Rödl,et al. Quantitative theorems for regular systems of equations , 1988, J. Comb. Theory, Ser. A.
[23] Endre Szemerédi,et al. Integer sets containing no arithmetic progressions , 1990 .
[24] Kennan T. Smith,et al. The uncertainty principle on groups , 1990 .
[25] J. Bourgain. A Tribute to Paul Erdős: On arithmetic progressions in sums of sets of integers , 1990 .
[26] H. Furstenberg,et al. A density version of the Hales-Jewett theorem , 1991 .
[27] Imre Z. Ruzsa,et al. Arithmetic progressions in sumsets , 1991 .
[28] Hanno Lefmann. On partition regular systems of equations , 1991, J. Comb. Theory, Ser. A.
[29] I. E. Shparlinskii. Estimates of Gaussian sums , 1991 .
[30] G. Freiman,et al. Integer Sum Sets Containing Long Arithmetic Progressions , 1992 .
[31] P. Stevenhagen,et al. Chebotarëv and his density theorem , 1996 .
[32] Imre Z. Ruzsa,et al. Generalized arithmetical progressions and sumsets , 1994 .
[33] Roy Meshulam,et al. On Subsets of Finite Abelian Groups with No 3-Term Arithmetic Progressions , 1995, J. Comb. Theory, Ser. A.
[34] R. Graham,et al. Handbook of Combinatorics , 1995 .
[35] Vitaly Bergelson,et al. Polynomial extensions of van der Waerden’s and Szemerédi’s theorems , 1996 .
[36] Melvyn B. Nathanson,et al. Additive Number Theory: Inverse Problems and the Geometry of Sumsets , 1996 .
[37] György Elekes,et al. On the number of sums and products , 1997 .
[38] Melvyn B. Nathanson,et al. On sums and products of integers , 1997 .
[39] Y. Kohayakawa. Szemerédi's regularity lemma for sparse graphs , 1997 .
[40] W. T. Gowers,et al. A New Proof of Szemerédi's Theorem for Arithmetic Progressions of Length Four , 1998 .
[41] Sums and Products from a Finite Set of Real Numbers , 1998 .
[42] Neil Hindman,et al. Algebra in the Stone-Cech Compactification: Theory and Applications , 1998 .
[43] Jean Bourgain,et al. On Triples in Arithmetic Progression , 1999 .
[44] Jean-Marc Deshouillers,et al. Structure Theory of Set Addition , 2018, Astérisque.
[45] Vitaly Bergelson,et al. Set-polynomials and polynomial extension of the Hales-Jewett Theorem , 1999 .
[46] I. Shparlinski,et al. Character Sums with Exponential Functions and their Applications: Preliminaries , 1999 .
[47] Imre Leader,et al. Additive and Multiplicative Ramsey Theory in the Reals and the Rationals , 1999, J. Comb. Theory, Ser. A.
[48] D. H. Brown,et al. New bounds for Gauss sums derived from kth powers , 2000 .
[49] Terence Tao,et al. From rotating needles to stability of waves; emerging connections between combinatorics, analysis and PDE , 2000 .
[50] V. Lev,et al. On the distribution of exponential sums. , 2000 .
[51] Terence Tao,et al. Recent progress on the Kakeya conjecture , 2000 .
[52] W. T. Gowers,et al. A new proof of Szemerédi's theorem , 2001 .
[53] B. Green. Arithmetic progressions in sumsets , 2002 .
[54] Ben Green,et al. On arithmetic structures in dense sets of integers , 2002 .
[55] Terence Tao,et al. Restriction and Kakeya phenomena for finite fields , 2002 .
[56] Mei-Chu Chang. A polynomial bound in Freiman's theorem , 2002 .
[57] T. Tao. An uncertainty principle for cyclic groups of prime order , 2003, math/0308286.
[58] J. Bourgain,et al. Estimates for the number of sums and products and for exponential sums over subgroups in fields of prime order , 2003 .
[59] B. Green. A Szemerédi-type regularity lemma in abelian groups, with applications , 2003, math/0310476.
[60] Ben Green,et al. Roth's theorem in the primes , 2003 .
[61] Imre Leader,et al. Open Problems in Partition Regularity , 2003, Comb. Probab. Comput..
[62] Ben Green. Some Constructions In The Inverse Spectral Theory Of Cyclic Groups , 2003, Comb. Probab. Comput..
[63] Terence Tao,et al. A sum-product estimate in finite fields, and applications , 2003, math/0301343.
[64] A. Leibman. Pointwise convergence of ergodic averages for polynomial sequences of translations on a nilmanifold , 2004, Ergodic Theory and Dynamical Systems.
[65] Todd Cochrane,et al. An improved Mordell type bound for exponential sums , 2004 .
[66] B. Green. Spectral Structure of Sets of Integers , 2004 .
[67] T. Tao,et al. The primes contain arbitrarily long arithmetic progressions , 2004, math/0404188.
[68] I. Shkredov. On a Generalization of Szemerédi's Theorem , 2005, math/0503639.
[69] T. Ziegler. A non-conventional ergodic theorem for a nilsystem , 2002, Ergodic Theory and Dynamical Systems.
[70] J. Bourgain,et al. MORE ON THE SUM-PRODUCT PHENOMENON IN PRIME FIELDS AND ITS APPLICATIONS , 2005 .
[71] Ben Green,et al. Finite field models in additive combinatories , 2004, BCC.
[72] Bryna Kra,et al. Nonconventional ergodic averages and nilmanifolds , 2005 .
[73] Ilya D. Shkredov,et al. On a problem of Gowers , 2006 .
[74] Bryna Kra,et al. Convergence of polynomial ergodic averages , 2005 .
[75] József Solymosi,et al. On the Number of Sums and Products , 2005 .
[76] B. Green,et al. Freiman's theorem in an arbitrary abelian group , 2005, math/0505198.
[77] E. Szemerédi,et al. Long Arithmetic Progressions in Sum‐Sets and the Number x‐Sum‐Free Sets , 2005 .
[78] Jean Bourgain,et al. Exponential sum estimates over subgroups ofZ*q,q arbitrary,q arbitrary , 2005 .
[79] Jean Bourgain,et al. Mordell's exponential sum estimate revisited , 2005 .
[80] Jean Bourgain,et al. Estimates on exponential sums related to the Diffie–Hellman Distributions , 2005 .
[81] András Sárközy,et al. On sums and products of residues modulo p , 2005 .
[82] I. Shkredov. Szemerédi's theorem and problems on arithmetic progressions , 2006 .
[83] Tamar Ziegler,et al. Universal characteristic factors and Furstenberg averages , 2004, math/0403212.
[84] An application of a local version of Chang's theorem , 2006, math/0607668.
[85] Neil Hindman,et al. Multiplicative structures in additively large sets , 2006, J. Comb. Theory, Ser. A.
[86] József Solymosi,et al. Arithmetic Progressions in Sets with Small Sumsets , 2005, Combinatorics, Probability and Computing.
[87] Terence Tao. A Quantitative Ergodic Theory Proof of Szemerédi's Theorem , 2006, Electron. J. Comb..
[88] E. Szemerédi,et al. Finite and infinite arithmetic progressions in sumsets , 2006 .
[89] Avi Wigderson,et al. Extracting Randomness Using Few Independent Sources , 2006, SIAM J. Comput..
[90] Илья Дмитриевич Шкредов. Теорема Семереди и задачи об арифметических прогрессиях , 2006 .
[91] Ben Green,et al. QUADRATIC UNIFORMITY OF THE MOBIUS FUNCTION , 2006, math/0606087.
[92] Алексей Анатольевич Глибичук,et al. Комбинаторные свойства множеств вычетов по простому модулю и задача Эрдeша - Грэхэма@@@Combinational properties of sets of residues modulo a prime and the Erdős - Graham problem , 2006 .
[93] Jean Bourgain,et al. Estimates for the Number of Sums and Products and for Exponential Sums in Fields of Prime Order , 2006 .
[94] J. Bourgain,et al. Exponential sum estimates over subgroups and almost subgroups of $$ \mathbb{Z}_{Q}^{*} $$, where Q is composite with few prime factors , 2006 .
[95] Ben Green,et al. Montreal Lecture Notes on Quadratic Fourier Analysis , 2006 .
[96] Derrick Hart,et al. Sums and products in finite fields: an integral geometric viewpoint , 2007, 0705.4256.
[97] I. Shkredov. On sumsets of dissociated sets , 2007, 0712.1074.
[98] M. Z. Garaev,et al. THE SUM-PRODUCT ESTIMATE FOR LARGE SUBSETS OF PRIME FIELDS , 2007, 0706.0702.
[99] I. Shkredov. Examples of sets with large trigonometric sums , 2007 .
[100] Shachar Lovett,et al. Inverse conjecture for the gowers norm is false , 2007, Theory Comput..
[101] T. Sanders. Appendix to ‘Roth’s theorem on progressions revisited,’ by J. Bourgain , 2007, 0710.0642.
[102] T. Schoen,et al. Arithmetic progressions in sparse sumsets , 2007 .
[103] S. Konyagin,et al. Additive properties of product sets in fields of prime order , 2007 .
[104] J. Bourgain,et al. Some Arithmetical Applications of the Sum-Product Theorems in Finite Fields , 2007 .
[105] Mei-Chu Chang,et al. On a question of Davenport and Lewis and new character sum bounds in finite fields , 2008 .
[106] Zhi-Wei Sun,et al. A variant of Tao's method with application to restricted sumsets , 2008 .
[107] M. Garaev,et al. The equation x1x2=x3x4+λ in fields of prime order and applications , 2008 .
[108] Enrico Bombieri,et al. Roots of Polynomials in Subgroups of and Applications to Congruences , 2008 .
[109] I. Shparlinski. ON THE SOLVABILITY OF BILINEAR EQUATIONS IN FINITE FIELDS , 2007, Glasgow Mathematical Journal.
[110] Terence Tao,et al. Norm convergence of multiple ergodic averages for commuting transformations , 2007, Ergodic Theory and Dynamical Systems.
[111] T. Sanders,et al. A Note on Freĭman's Theorem in Vector Spaces , 2006, Combinatorics, Probability and Computing.
[112] Jean Bourgain,et al. Roth’s theorem on progressions revisited , 2008 .
[113] T. Sanders. Additive structures in sumsets , 2006, Mathematical Proceedings of the Cambridge Philosophical Society.
[114] Ben Green,et al. AN INVERSE THEOREM FOR THE GOWERS $U^3(G)$ NORM , 2008, Proceedings of the Edinburgh Mathematical Society.
[115] I. Shkredov. On sets of large trigonometric sums , 2008 .
[116] Jean Bourgain,et al. Multilinear Exponential Sums in Prime Fields Under Optimal Entropy Condition on the Sources , 2009 .
[117] T. Sanders. Roth’s theorem in ℤ4n , 2008, 0807.5101.
[118] A. Cauchy. Oeuvres complètes: Recherches sur les nombres , 2009 .
[119] Tim Austin. On the norm convergence of non-conventional ergodic averages , 2008, Ergodic Theory and Dynamical Systems.
[120] Ben Green,et al. New bounds for Szemerédi's theorem, I: progressions of length 4 in finite field geometries , 2009 .
[121] Norbert Hegyv'ari,et al. Explicit constructions of extractors and expanders , 2012, 1206.1146.
[122] Luca Trevisan,et al. Gowers Uniformity, Influence of Variables, and PCPs , 2009, SIAM J. Comput..
[123] Ben Green,et al. An equivalence between inverse sumset theorems and inverse conjectures for the U3 norm , 2009, Mathematical Proceedings of the Cambridge Philosophical Society.
[124] W. T. Gowers,et al. Rough Structure and Classification , 2010 .
[125] A. Hales,et al. Regularity and Positional Games , 1963 .
[126] Terence Tao,et al. The inverse conjecture for the Gowers norm over finite fields via the correspondence principle , 2008, 0810.5527.
[127] József Solymosi,et al. Sum-product Estimates in Finite Fields via Kloosterman Sums , 2010 .
[128] M. Garaev,et al. An Explicit Sum-Product Estimate in p , 2010 .