Efficient pairwise preference elicitation allowing for indifference
暂无分享,去创建一个
Jürgen Branke | Salvatore Greco | Salvatore Corrente | Walter J. Gutjahr | J. Branke | S. Greco | W. Gutjahr | Salvatore Corrente
[1] R. Luce. Semiorders and a Theory of Utility Discrimination , 1956 .
[2] Milosz Kadzinski,et al. Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.
[3] Glenn Shafer,et al. A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.
[4] Krzysztof Z. Gajos,et al. Preference elicitation for interface optimization , 2005, UIST.
[5] Salvatore Greco,et al. Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..
[6] R. L. Keeney,et al. Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.
[7] Salvatore Greco,et al. Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.
[8] G. Rota. On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .
[9] Salvatore Greco,et al. Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..
[10] Ali E. Abbas,et al. Entropy methods for adaptive utility elicitation , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.
[11] Itzhak Gilboa,et al. Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..
[12] Craig Boutilier,et al. Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..
[13] Philippe Vincke,et al. Semiorders - Properties, Representations, Applications , 1997, Theory and decision library: series B.
[14] J. Siskos. Assessing a set of additive utility functions for multicriteria decision-making , 1982 .
[15] P. Fishburn. Interval representations for interval orders and semiorders , 1973 .
[16] M. Grabisch. The application of fuzzy integrals in multicriteria decision making , 1996 .
[17] Michel Grabisch,et al. K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..
[18] Peter C. Fishburn,et al. Interval orders and interval graphs : a study of partially ordered sets , 1985 .
[19] Matthias Ehrgott,et al. Multiple criteria decision analysis: state of the art surveys , 2005 .
[20] G. Rota. On the Foundations of Combinatorial Theory , 2009 .
[21] P. Viappiani,et al. Minimax regret approaches for preference elicitation with rank-dependent aggregators , 2015 .
[22] Murray Campbell,et al. Evaluating multiple attribute items using queries , 2001, EC '01.
[23] Krzysztof Ciomek,et al. Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models , 2017 .
[24] Bruce E. Barrett,et al. Decision quality using ranked attribute weights , 1996 .
[25] Jürgen Branke,et al. Using Indifference Information in Robust Ordinal Regression , 2015, EMO.
[26] Murat Köksalan,et al. An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..
[27] Milosz Kadzinski,et al. Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..
[28] Milosz Kadzinski,et al. Scoring procedures for multiple criteria decision aiding with robust and stochastic ordinal regression , 2016, Comput. Oper. Res..
[29] José Rui Figueira,et al. CUT: A Multicriteria Approach for Concavifiable Preferences , 2014, Oper. Res..
[30] S. Greco,et al. Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression ☆ , 2016 .
[31] Raimo P. Hämäläinen,et al. Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.
[32] Alain Chateauneuf,et al. Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.
[33] S French,et al. Multicriteria Methodology for Decision Aiding , 1996 .
[34] Matthias Ehrgott,et al. Trends in Multiple Criteria Decision Analysis , 2010 .
[35] Ralph L. Keeney,et al. Decisions with multiple objectives: preferences and value tradeoffs , 1976 .
[36] Risto Lahdelma,et al. SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..
[37] Jean-Luc Marichal,et al. Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..
[38] Robert L. Smith,et al. Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..
[39] Ariel D. Procaccia,et al. Strategyproof Classification with Shared Inputs , 2009, IJCAI.
[40] S. Greco,et al. Necessary and possible preference structures , 2013 .
[41] Salvatore Greco,et al. Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..
[42] Luis C. Dias,et al. Simple procedures of choice in multicriteria problems without precise information about the alternatives' values , 2010, Comput. Oper. Res..
[43] G. Choquet. Theory of capacities , 1954 .
[44] P. Wakker. Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .
[45] Risto Lahdelma,et al. SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..
[46] Tommi Tervonen,et al. Entropy-optimal weight constraint elicitation with additive multi-attribute utility models , 2016 .
[47] Tommi Tervonen,et al. Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..
[48] José Rui Figueira,et al. Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues , 2014 .
[49] John R. Hauser,et al. Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .