Efficient pairwise preference elicitation allowing for indifference

Many methods in Multi-Criteria Decision Analysis for choice problems rely on eliciting pairwise preference information in their attempt to efficiently identify the most preferred solution out of a larger set of solutions. That is, they repeatedly ask the decision maker which of two solutions is preferred, and then use this information to reduce the number of possibly preferred solutions until only one remains. However, if the solutions have a very similar value to the decision maker, he/she may not be able to accurately decide which solution is preferred. This paper makes two main contributions. First, it extends Robust Ordinal Regression to allow a user to declare indifference in case the values of the two solutions do not differ by more than some personal threshold. Second, we propose and compare several heuristics to pick pairs of solutions to be shown to the decision maker in order to minimize the number of interactions necessary.

[1]  R. Luce Semiorders and a Theory of Utility Discrimination , 1956 .

[2]  Milosz Kadzinski,et al.  Robust ordinal regression in preference learning and ranking , 2013, Machine Learning.

[3]  Glenn Shafer,et al.  A Mathematical Theory of Evidence , 2020, A Mathematical Theory of Evidence.

[4]  Krzysztof Z. Gajos,et al.  Preference elicitation for interface optimization , 2005, UIST.

[5]  Salvatore Greco,et al.  Stochastic multiobjective acceptability analysis for the Choquet integral preference model and the scale construction problem , 2013, Eur. J. Oper. Res..

[6]  R. L. Keeney,et al.  Decisions with Multiple Objectives: Preferences and Value Trade-Offs , 1977, IEEE Transactions on Systems, Man, and Cybernetics.

[7]  Salvatore Greco,et al.  Robust Ordinal Regression , 2014, Trends in Multiple Criteria Decision Analysis.

[8]  G. Rota On the foundations of combinatorial theory I. Theory of Möbius Functions , 1964 .

[9]  Salvatore Greco,et al.  Ordinal regression revisited: Multiple criteria ranking using a set of additive value functions , 2008, Eur. J. Oper. Res..

[10]  Ali E. Abbas,et al.  Entropy methods for adaptive utility elicitation , 2004, IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans.

[11]  Itzhak Gilboa,et al.  Additive representations of non-additive measures and the choquet integral , 1994, Ann. Oper. Res..

[12]  Craig Boutilier,et al.  Constraint-based optimization and utility elicitation using the minimax decision criterion , 2006, Artif. Intell..

[13]  Philippe Vincke,et al.  Semiorders - Properties, Representations, Applications , 1997, Theory and decision library: series B.

[14]  J. Siskos Assessing a set of additive utility functions for multicriteria decision-making , 1982 .

[15]  P. Fishburn Interval representations for interval orders and semiorders , 1973 .

[16]  M. Grabisch The application of fuzzy integrals in multicriteria decision making , 1996 .

[17]  Michel Grabisch,et al.  K-order Additive Discrete Fuzzy Measures and Their Representation , 1997, Fuzzy Sets Syst..

[18]  Peter C. Fishburn,et al.  Interval orders and interval graphs : a study of partially ordered sets , 1985 .

[19]  Matthias Ehrgott,et al.  Multiple criteria decision analysis: state of the art surveys , 2005 .

[20]  G. Rota On the Foundations of Combinatorial Theory , 2009 .

[21]  P. Viappiani,et al.  Minimax regret approaches for preference elicitation with rank-dependent aggregators , 2015 .

[22]  Murray Campbell,et al.  Evaluating multiple attribute items using queries , 2001, EC '01.

[23]  Krzysztof Ciomek,et al.  Heuristics for prioritizing pair-wise elicitation questions with additive multi-attribute value models , 2017 .

[24]  Bruce E. Barrett,et al.  Decision quality using ranked attribute weights , 1996 .

[25]  Jürgen Branke,et al.  Using Indifference Information in Robust Ordinal Regression , 2015, EMO.

[26]  Murat Köksalan,et al.  An Interactive Evolutionary Metaheuristic for Multiobjective Combinatorial Optimization , 2003, Manag. Sci..

[27]  Milosz Kadzinski,et al.  Robust multi-criteria ranking with additive value models and holistic pair-wise preference statements , 2013, Eur. J. Oper. Res..

[28]  Milosz Kadzinski,et al.  Scoring procedures for multiple criteria decision aiding with robust and stochastic ordinal regression , 2016, Comput. Oper. Res..

[29]  José Rui Figueira,et al.  CUT: A Multicriteria Approach for Concavifiable Preferences , 2014, Oper. Res..

[30]  S. Greco,et al.  Combining analytical hierarchy process and Choquet integral within non-additive robust ordinal regression ☆ , 2016 .

[31]  Raimo P. Hämäläinen,et al.  Preference ratios in multiattribute evaluation (PRIME)-elicitation and decision procedures under incomplete information , 2001, IEEE Trans. Syst. Man Cybern. Part A.

[32]  Alain Chateauneuf,et al.  Some Characterizations of Lower Probabilities and Other Monotone Capacities through the use of Möbius Inversion , 1989, Classic Works of the Dempster-Shafer Theory of Belief Functions.

[33]  S French,et al.  Multicriteria Methodology for Decision Aiding , 1996 .

[34]  Matthias Ehrgott,et al.  Trends in Multiple Criteria Decision Analysis , 2010 .

[35]  Ralph L. Keeney,et al.  Decisions with multiple objectives: preferences and value tradeoffs , 1976 .

[36]  Risto Lahdelma,et al.  SMAA-2: Stochastic Multicriteria Acceptability Analysis for Group Decision Making , 2001, Oper. Res..

[37]  Jean-Luc Marichal,et al.  Determination of weights of interacting criteria from a reference set , 2000, Eur. J. Oper. Res..

[38]  Robert L. Smith,et al.  Efficient Monte Carlo Procedures for Generating Points Uniformly Distributed over Bounded Regions , 1984, Oper. Res..

[39]  Ariel D. Procaccia,et al.  Strategyproof Classification with Shared Inputs , 2009, IJCAI.

[40]  S. Greco,et al.  Necessary and possible preference structures , 2013 .

[41]  Salvatore Greco,et al.  Assessing non-additive utility for multicriteria decision aid , 2004, Eur. J. Oper. Res..

[42]  Luis C. Dias,et al.  Simple procedures of choice in multicriteria problems without precise information about the alternatives' values , 2010, Comput. Oper. Res..

[43]  G. Choquet Theory of capacities , 1954 .

[44]  P. Wakker Additive Representations of Preferences: A New Foundation of Decision Analysis , 1988 .

[45]  Risto Lahdelma,et al.  SMAA - Stochastic multiobjective acceptability analysis , 1998, Eur. J. Oper. Res..

[46]  Tommi Tervonen,et al.  Entropy-optimal weight constraint elicitation with additive multi-attribute utility models , 2016 .

[47]  Tommi Tervonen,et al.  Hit-And-Run enables efficient weight generation for simulation-based multiple criteria decision analysis , 2013, Eur. J. Oper. Res..

[48]  José Rui Figueira,et al.  Discriminating thresholds as a tool to cope with imperfect knowledge in multiple criteria decision aiding: Theoretical results and practical issues , 2014 .

[49]  John R. Hauser,et al.  Polyhedral Methods for Adaptive Choice-Based Conjoint Analysis , 2004 .