Customising radiative decay dynamics of two-dimensional excitons via position- and polarisation-dependent vacuum-field interference

Embodying bosonic and interactive characteristics in two-dimensional space, excitons in transition metal dichalcogenides (TMDCs) have garnered considerable attention. The utilization of the strong-correlation effects, long-range transport, and valley-dependent properties requires customizing exciton decay dynamics. Vacuum-field manipulation allows radiative decay engineering without disturbing intrinsic material properties. However, conventional flat mirrors cannot customize the radiative decay landscape in TMDC's plane or support vacuum-field interference with desired spectrum and polarization properties. Here, we present a meta-mirror platform resolving the issues with more optical degrees of freedom. For neutral excitons of the monolayer MoSe2, the optical layout formed by meta-mirrors manipulated the radiative decay rate in space by 2 orders of magnitude and revealed the statistical correlation between emission intensity and spectral line width. Moreover, the anisotropic meta-mirror demonstrated polarization-dependent radiative decay control. Our platform would be promising to tailor two-dimensional distributions of lifetime, density, diffusion, and polarization of TMDC excitons in advanced opto-excitonic applications.

[1]  Xiao Wang,et al.  Electrically Controlled Wavelength-Tunable Photoluminescence from van der Waals Heterostructures. , 2022, ACS applied materials & interfaces.

[2]  A. High,et al.  Electrically controllable chirality in a nanophotonic interface with a two-dimensional semiconductor , 2022, Nature Photonics.

[3]  B. Halperin,et al.  Crossover between strongly coupled and weakly coupled exciton superfluids , 2020, Science.

[4]  Kenji Watanabe,et al.  Free Trions with Near-Unity Quantum Yield in Monolayer MoSe2. , 2021, ACS nano.

[5]  Min‐Kyo Seo,et al.  Experimental Probing of Canonical Electromagnetic Spin Angular Momentum Distribution via Valley-Polarized Photoluminescence. , 2021, Physical review letters.

[6]  Kenji Watanabe,et al.  Imaging two-dimensional generalized Wigner crystals , 2021, Nature.

[7]  E. Rabani,et al.  Inhibited nonradiative decay at all exciton densities in monolayer semiconductors , 2021, Science.

[8]  Kenji Watanabe,et al.  Interlayer Exciton Transport in MoSe2/WSe2 Heterostructures. , 2021, ACS nano.

[9]  Kenji Watanabe,et al.  Evidence for a monolayer excitonic insulator , 2020, Nature Physics.

[10]  Kenji Watanabe,et al.  Signatures of Wigner crystal of electrons in a monolayer semiconductor , 2020, Nature.

[11]  Chunrui Han,et al.  Polarized resonant emission of monolayer WS2 coupled with plasmonic sawtooth nanoslit array , 2020, Nature Communications.

[12]  Kenji Watanabe,et al.  Mott and generalized Wigner crystal states in WSe2/WS2 moiré superlattices , 2019, Nature.

[13]  H. Mabuchi,et al.  Coherent feedback control of two-dimensional excitons , 2019, Physical Review Research.

[14]  M. Lukin,et al.  Controlling Excitons in an Atomically Thin Membrane with a Mirror. , 2019, Physical review letters.

[15]  K. Dini,et al.  Robust room temperature valley Hall effect of interlayer excitons. , 2019, Nano letters.

[16]  T. Lu,et al.  Engineering radiative coupling of excitons in 2D semiconductors , 2019, Optica.

[17]  J. Redwing,et al.  Room‐Temperature Active Modulation of Valley Dynamics in a Monolayer Semiconductor through Chiral Purcell Effects , 2019, Advanced materials.

[18]  J. Shan,et al.  Evidence of high-temperature exciton condensation in two-dimensional atomic double layers , 2019, Nature.

[19]  Kenji Watanabe,et al.  Valley-polarized exciton currents in a van der Waals heterostructure , 2019, Nature Nanotechnology.

[20]  P. Genevet,et al.  Metasurface orbital angular momentum holography , 2019, Nature Communications.

[21]  E. Yablonovitch,et al.  Electrical suppression of all nonradiative recombination pathways in monolayer semiconductors , 2019, Science.

[22]  N. Gabor,et al.  Electron–hole liquid in a van der Waals heterostructure photocell at room temperature , 2019, Nature Photonics.

[23]  C. Robert,et al.  Control of the Exciton Radiative Lifetime in van der Waals Heterostructures. , 2019, Physical review letters.

[24]  E. Tutuc,et al.  Interlayer exciton laser of extended spatial coherence in atomically thin heterostructures , 2019, Nature.

[25]  M. Lukin,et al.  Electrical control of interlayer exciton dynamics in atomically thin heterostructures , 2018, Science.

[26]  Jiaqiang Yan,et al.  Signatures of moiré-trapped valley excitons in MoSe2/WSe2 heterobilayers , 2018, Nature.

[27]  J. Shan,et al.  Light–valley interactions in 2D semiconductors , 2018, Nature Photonics.

[28]  Takashi Taniguchi,et al.  Room-temperature electrical control of exciton flux in a van der Waals heterostructure , 2018, Nature.

[29]  Ziwei Li,et al.  Tailoring MoS2 Valley‐Polarized Photoluminescence with Super Chiral Near‐Field , 2018, Advanced materials.

[30]  Tobias Korn,et al.  Exciton Diffusion and Halo Effects in Monolayer Semiconductors. , 2018, Physical review letters.

[31]  J. Hone,et al.  Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities , 2018, Nature Nanotechnology.

[32]  Ming C. Wu,et al.  Large-area and bright pulsed electroluminescence in monolayer semiconductors , 2018, Nature Communications.

[33]  M. Rohlfing,et al.  Strain Control of Exciton-Phonon Coupling in Atomically Thin Semiconductors. , 2018, Nano letters.

[34]  Y. Iwasa,et al.  Exciton Hall effect in monolayer MoS2. , 2017, Nature materials.

[35]  Vinod M. Menon,et al.  Optical control of room-temperature valley polaritons , 2017, Nature Photonics.

[36]  M. S. Skolnick,et al.  Valley-addressable polaritons in atomically thin semiconductors , 2017, Nature Photonics.

[37]  Brian D Gerardot,et al.  Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor , 2016, Nature Communications.

[38]  Vinayak P. Dravid,et al.  Valley-polarized exciton–polaritons in a monolayer semiconductor , 2017, Nature Photonics.

[39]  A. Knorr,et al.  Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides , 2016, Nature Communications.

[40]  J. Shan,et al.  Electrical control of the valley Hall effect in bilayer MoS2 transistors. , 2015, Nature nanotechnology.

[41]  E. Yablonovitch,et al.  Near-unity photoluminescence quantum yield in MoS2 , 2015, Science.

[42]  Alexey Chernikov,et al.  Electrical Tuning of Exciton Binding Energies in Monolayer WS_{2}. , 2015, Physical review letters.

[43]  B. Gerardot,et al.  Strain-Induced Spatial and Spectral Isolation of Quantum Emitters in Mono- and Bilayer WSe2 , 2015, Nano letters.

[44]  Jing Kong,et al.  Leveraging Nanocavity Harmonics for Control of Optical Processes in 2D Semiconductors. , 2015, Nano letters.

[45]  Guoxing Zheng,et al.  Metasurface holograms reaching 80% efficiency. , 2015, Nature nanotechnology.

[46]  Yuan Wang,et al.  Monolayer excitonic laser , 2015, Nature Photonics.

[47]  William L. Barnes,et al.  Plasmonic meta-atoms and metasurfaces , 2014, Nature Photonics.

[48]  David R. Smith,et al.  Probing the mechanisms of large Purcell enhancement in plasmonic nanoantennas , 2014, Nature Photonics.

[49]  Mark L Brongersma,et al.  Plasmonic beaming and active control over fluorescent emission. , 2011, Nature communications.