Analyse radiative des photobioréacteurs

L'ingenierie de la photosynthese est une voie prometteuse en vue de produire a la fois des vecteurs energetiques et des molecules plateformes pour palier la rarefaction des ressources fossiles. Le defi a relever est de taille car il faut reussir a mettre au point des procedes solaires de production de biomasse a constante de temps courte (quelques jours), la ou une centaine de millions d'annees a ete necessaire a la formation du petrole. Cet objectif pourrait etre atteint en cultivant des micro-organismes photosynthetiques dans des photobioreacteurs dont les performances cinetiques en surface et en volume seraient optimales. Une telle optimisation necessite avant tout une analyse fine des transferts radiatifs au sein du procede. L'analyse radiative des photobioreacteurs qui est ici proposee s'ouvre sur la determination des proprietes d'absorption et de diffusion des suspensions de micro-organismes photosynthetiques, a partir de leurs caracteristiques morphologiques, metaboliques et structurales. Une chaine de modelisation est construite, mise en oeuvre et validee experimentalement pour des micro-organismes de formes simples ; a terme, la demarche developpee pourra directement etre etendue a des formes plus complexes. Puis, l'analyse du transfert radiatif en diffusion multiple est introduite et illustree par differentes approximations qui apparaissent pertinentes pour une conceptualisation des photobioreacteurs, menant ainsi a la construction d'un intuitif necessaire a leur optimisation. Enfin, la methode de Monte Carlo est mise en oeuvre afin de resoudre rigoureusement la diffusion multiple en geometries complexes (geometries qui decoulent d'une conception optimisee du procede) et afin de calculer les performances cinetiques a l'echelle du photobioreacteur. Ce dernier calcul utilise une avancee methodologique qui permet de traiter facilement le couplage non-lineaire du transfert radiatif a la cinetique locale de la photosynthese (et qui laisse entrevoir de nombreuses autres applications dans d'autres domaines de la physique du transport). Ces outils de simulation mettent a profit les developpements les plus recents autour de la methode de Monte Carlo, tant sur le plan informatique (grâce a une implementation dans l'environnement de developpement EDStar) que sur le plan algorithmique : formulation integrale, algorithmes a zero-variance, calcul de sensibilites (le calcul des sensibilites aux parametres geometriques est ici aborde d'une maniere originale qui permet de simplifier significativement sa mise en oeuvre, pour un ensemble de configurations academiques testees). Les perspectives de ce travail seront d'utiliser les outils d'analyse developpes durant cette these afin d'alimenter une reflexion sur l'intensification des photobioreacteurs, et d'etendre la demarche proposee a l'etude des systemes photoreactifs dans leur ensemble.

[1]  Ying Zhao,et al.  MORPHOLOGICAL REVERSION OF SPIRULINA (ARTHROSPIRA) PLATENSIS (CYANOPHYTA): FROM LINEAR TO HELICAL 1 , 2005 .

[2]  Alberto E. Cassano,et al.  Photoreactor Analysis and Design: Fundamentals and Applications , 1995 .

[3]  J. E. Hoogenboom,et al.  Zero-Variance Monte Carlo Schemes Revisited , 2008 .

[4]  Jian Li,et al.  State and parameter estimation of microalgal photobioreactor cultures based on local irradiance measurement. , 2003, Journal of biotechnology.

[5]  V. Goetz,et al.  Experimental and numerical studies of a solar photocatalytic process in a dynamic mode applied to three catalyst media , 2012 .

[6]  Y. Liu,et al.  Anomalous diffraction theory for arbitrarily oriented finite circular cylinders and comparison with exact T-matrix results. , 1998, Applied optics.

[7]  I. Thormählen,et al.  Refractive Index of Water and Its Dependence on Wavelength, Temperature, and Density , 1985 .

[8]  J. Cornet,et al.  Kinetic modeling of the photosynthetic growth of Chlamydomonas reinhardtii in a photobioreactor , 2012, Biotechnology progress.

[9]  C. Dussap,et al.  A fully predictive model for one-dimensional light attenuation by Chlamydomonas reinhardtii in a torus photobioreactor. , 2005, Biotechnology and bioengineering.

[10]  A. Quirantes,et al.  Simulating the optical properties of phytoplankton cells using a two-layered spherical geometry , 2009 .

[11]  S. Bernard,et al.  Measured and modelled optical properties of particulate matter in the southern Benguela : research article , 2001 .

[12]  V. Sundström,et al.  Photosynthetic Light-Harvesting Pigment−Protein Complexes: Toward Understanding How and Why , 1996 .

[13]  Laurent Pilon,et al.  Radiation characteristics of Botryococcus braunii, Chlorococcum littorale, and Chlorella sp. used for CO2 fixation and biofuel production , 2009 .

[14]  J. D. L. Torre Calculs de sensibilités par méthode de Monte-Carlo, pour la conception de procédés à énergie solaire concentrée , 2011 .

[15]  Ari Sihvola,et al.  Electromagnetic mixing formulas and applications , 1999 .

[16]  L. Vernon,et al.  Pigment-protein complexes derived from Rhondospirillum rubrum chromatophores by enzymatic digestion. , 1967, Biochimica et biophysica acta.

[17]  Jean-François Cornet,et al.  Experimental and theoretical assessment of maximum productivities for the microalgae Chlamydomonas reinhardtii in two different geometries of photobioreactors , 2009, Biotechnology progress.

[18]  Anthony J. Baran,et al.  A review of the light scattering properties of cirrus , 2009 .

[19]  P. Lamy,et al.  On the validity of effective-medium theories in the case of light extinction by inhomogeneous dust particles , 1990 .

[20]  V. Lucarini Kramers-Kronig relations in optical materials research , 2005 .

[21]  C. Sorensen Light Scattering by Fractal Aggregates: A Review , 2001 .

[22]  G. Bratbak,et al.  Bacterial dry matter content and biomass estimations , 1984, Applied and environmental microbiology.

[23]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[24]  Jian-Qi Zhao,et al.  Bridging technique for calculating the extinction efficiency of arbitrary shaped particles. , 2003, Applied optics.

[25]  A. Bricaud,et al.  Theoretical results concerning light absorption in a discrete medium, and application to specific absorption of phytoplankton , 1981 .

[26]  P. Courtier,et al.  Variational Assimilation of Meteorological Observations With the Adjoint Vorticity Equation. I: Theory , 2007 .

[27]  L. Spencer,et al.  Optical microscopy in photosynthesis , 2009, Photosynthesis Research.

[28]  R. Spurr Linearized radiative transfer theory : a general discrete ordinate approach to the calculation of radiances and analytic weighting functions, with application to atmospheric remote sensing , 2001 .

[29]  T. Wriedt Light scattering theories and computer codes , 2009 .

[30]  Lawrence Bogorad,et al.  COMPLEMENTARY CHROMATIC ADAPTATION IN A FILAMENTOUS BLUE-GREEN ALGA , 1973, The Journal of cell biology.

[31]  D. Weuster‐Botz,et al.  Model‐supported optimization of phototrophic growth in a stirred‐tank photobioreactor , 2006, Biotechnology and bioengineering.

[32]  K. Ross,et al.  The water and solid content of living bacterial spores and vegetative cells as indicated by refractive index measurements. , 1957, Journal of general microbiology.

[33]  Michael Grätzel,et al.  Photoelectrochemical cells , 2001, Nature.

[34]  C. L. Tien,et al.  Thermal radiation in particulate media with dependent and independent scattering , 1987 .

[35]  Shuichi Aiba,et al.  Growth kinetics of photosynthetic microorganisms , 1982 .

[36]  A. Melis,et al.  Optical properties of microalgae for enhanced biofuels production. , 2008, Optics express.

[37]  P. Wyatt Differential light scattering: a physical method for identifying living bacterial cells. , 1968, Applied optics.

[38]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[39]  R. Marshak The Milne Problem for a Large Plane Slab with Constant Source and Anisotropic Scattering , 1947 .

[40]  F. Schötz,et al.  Die Architektur und Organisation derChlamydomonas-Zelle , 1972, Protoplasma.

[41]  R. Majchrowski,et al.  Model of the in vivo spectral absorption of algal pigments. Part 1. Mathematical apparatus , 2000 .

[42]  Halil Berberoglu,et al.  Radiation characteristics of Chlamydomonas reinhardtii CC125 and its truncated chlorophyll antenna transformants tla1, tlaX and tla1-CW+ , 2008 .

[43]  Loparev Av,et al.  [Coherent phase microscopy: a new method of identification of intracellular structures based on their optical and morphometric parameters]. , 2008 .

[44]  F D Bryant,et al.  Absolute optical cross sections of cells and chloroplasts. , 1969, Archives of biochemistry and biophysics.

[45]  W. Wiscombe,et al.  Scattering from nonspherical Chebyshev particles. 2: Means of angular scattering patterns. , 1988, Applied optics.

[46]  T. Wriedt,et al.  Improving the numerical stability of T-matrix light scattering calculations for extreme particle shapes using the nullfield method with discrete sources , 2011 .

[47]  W. Steen Absorption and Scattering of Light by Small Particles , 1999 .

[48]  M. Pinar Mengüç,et al.  Thermal Radiation Heat Transfer , 2020 .

[49]  Eyvind Aas,et al.  Refractive index of phytoplankton derived from its metabolite composition , 1996 .

[50]  T. Trautmann,et al.  Optical properties of internally mixed ammonium sulfate and soot particles--a study of individual aerosol particles and ambient aerosol populations. , 2008, Applied optics.

[51]  Timo Nousiainen,et al.  Optical modeling of mineral dust particles: A review , 2009 .

[52]  A. Bricaud,et al.  Light attenuation and scattering by phytoplanktonic cells: a theoretical modeling. , 1986, Applied optics.

[53]  Optimization of radiator position in an internally radiating photobioreactor: A model simulation study , 2003 .

[54]  Massoud Kaviany,et al.  Independent theory versus direct simulation of radiation heat transfer in packed beds , 1991 .

[55]  C. Fang-Yen,et al.  Tomographic phase microscopy , 2008, Nature Methods.

[56]  Patrick Simon,et al.  Retrieval of Linear Optical Functions from Finite Range Spectra , 2007, Applied spectroscopy.

[57]  Bérangère Farges,et al.  Spectral kinetic modeling and long‐term behavior assessment of Arthrospira platensis growth in photobioreactor under red (620 nm) light illumination , 2020, Biotechnology progress.

[58]  Maxime Roger Modèles de sensibilité dans le cadre de la méthode de Monte-Carlo : illustrations en transfert radiatif , 2006 .

[59]  Larry D. Travis,et al.  Capabilities and limitations of a current FORTRAN implementation of the T-matrix method for randomly oriented, rotationally symmetric scatterers , 1998 .

[60]  Gorden Videen,et al.  Effective medium theories for irregular fluffy structures: aggregation of small particles. , 2007, Applied optics.

[61]  A. Katz,et al.  Statistical interpretation of light anomalous diffraction by small particles and its applications in bio-agent detection and monitoring , 2008 .

[62]  J. Howell The Monte Carlo Method in Radiative Heat Transfer , 1998 .

[63]  J. Myers,et al.  RELATIONS BETWEEN PIGMENT CONTENT AND PHOTOSYNTHETIC CHARACTERISTICS IN A BLUE-GREEN ALGA , 1955, The Journal of general physiology.

[64]  Olivier Boucher,et al.  Aerosol absorption and radiative forcing , 2006 .

[65]  Durian Influence of boundary reflection and refraction on diffusive photon transport. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[66]  Carl Eckart,et al.  The Approximate Solution of One-Dimensional Wave Equations* , 1966 .

[67]  F. Lurçat,et al.  Causalité et relations de Kramers-Kronig , 1961 .

[68]  P. Wyatt Light scattering in the microbial world , 1972 .

[69]  E. H. Harris The Chlamydomonas sourcebook , 2009 .

[70]  T. Parsons,et al.  A practical handbook of seawater analysis , 1968 .

[71]  J. Toll Causality and the Dispersion Relation: Logical Foundations , 1956 .

[72]  Clemens Posten,et al.  Light distribution in a novel photobioreactor – modelling for optimization , 2001, Journal of Applied Phycology.

[73]  M. Kleiman,et al.  Scattering from a long helix: Theory and simulation , 2008 .

[74]  Michael I. Mishchenko,et al.  A study of radiative properties of fractal soot aggregates using the superposition T-matrix method , 2008 .

[75]  H. V. Hulst Light Scattering by Small Particles , 1957 .

[76]  C. Erlick Effective Refractive Indices of Water and Sulfate Drops Containing Absorbing Inclusions , 2006 .

[77]  L. Kolokolova,et al.  Scattering by inhomogeneous particles: microwave analog experiments and comparison to effective medium theories , 2001 .

[78]  António A Vicente,et al.  Light Regime Characterization in an Airlift Photobioreactor for Production of Microalgae with High Starch Content , 2010, Applied biochemistry and biotechnology.

[79]  Kamran Badizadegan,et al.  Field-based angle-resolved light-scattering study of single live cells. , 2008, Optics letters.

[80]  Dominique Baillis,et al.  Thermal radiation properties of dispersed media: theoretical prediction and experimental characterization , 2000 .

[81]  Bryan A. Baum,et al.  A new look at anomalous diffraction theory (ADT): Algorithm in cumulative projected-area distribution domain and modified ADT , 2004 .

[82]  Min Xu,et al.  Unified Mie and fractal scattering by biological cells and subcellular structures. , 2007, Optics letters.

[83]  P. Wyatt,et al.  Cell Wall Thickness, Size Distribution, Refractive Index Ratio and Dry Weight Content of Living Bacteria (Stapylococcus aureus) , 1970, Nature.

[84]  T. Bond,et al.  Light Absorption by Carbonaceous Particles: An Investigative Review , 2006 .

[85]  P. Morse,et al.  Methods of theoretical physics , 1955 .

[86]  P. Bergé,et al.  L'ordre dans le chaos. , 1984 .

[87]  W. Farone,et al.  The range of validity of the anomalous diffraction approximation to electromagnetic scattering by a sphere. , 1968, Applied optics.

[88]  K. Badizadegan,et al.  Live cell refractometry using microfluidic devices. , 2006, Optics letters.

[89]  V Tychinsky,et al.  The metabolic component of cellular refractivity and its importance for optical cytometry , 2009, Journal of biophotonics.

[90]  Dale A. Kiefer,et al.  In-vivo absorption properties of algal pigments , 1990, Defense, Security, and Sensing.

[91]  Y. Yung,et al.  Atmospheric Radiation: Theoretical Basis , 1989 .

[92]  M. Caffarel,et al.  Zero-Variance Principle for Monte Carlo Algorithms , 1999, cond-mat/9911396.

[93]  S. Blanco,et al.  Short-path statistics and the diffusion approximation. , 2006, Physical review letters.

[94]  Craig F. Bohren,et al.  Radar Backscattering by Inhomogeneous Precipitation Particles , 1980 .

[95]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[96]  Greg Humphreys,et al.  Physically Based Rendering: From Theory to Implementation , 2004 .

[97]  M. Andreae,et al.  Derivation of the density and refractive index of organic matter and elemental carbon from closure between physical and chemical aerosol properties. , 2009, Environmental science & technology.

[98]  D. W. T. Rippin Parameter estimation in engineering and science, by James V. Beck and Kenneth J. Arnold, published by John Wiley and Sons, 1977. 501 + XIX pages. $24.95 , 1978 .

[99]  Lutz Wobbe,et al.  Improvement of light to biomass conversion by de-regulation of light-harvesting protein translation in Chlamydomonas reinhardtii. , 2009, Journal of biotechnology.

[100]  S. Asano,et al.  Light scattering by randomly oriented spheroidal particles. , 1980, Applied optics.

[101]  M. Merzlyak,et al.  Absorption and scattering of light by suspensions of cells and subcellular particles: an analysis in terms of Kramers-Kronig relations , 2004, Photochemical & photobiological sciences : Official journal of the European Photochemistry Association and the European Society for Photobiology.

[102]  J. Gielis A generic geometric transformation that unifies a wide range of natural and abstract shapes. , 2003, American journal of botany.

[103]  Craig Donner,et al.  Scattering , 2021, SIGGRAPH '09.

[104]  K. Kogure,et al.  Separation of Marine Bacteria according to Buoyant Density by Use of the Density-Dependent Cell Sorting Method , 2006, Applied and Environmental Microbiology.

[105]  G. C. Pomraning,et al.  Linear Transport Theory , 1967 .

[106]  S. M. Shinners Sensitivity analysis of dynamic systems , 1965 .

[107]  I. Suh,et al.  Cultivation of a cyanobacterium in an internally radiating air-lift photobioreactor , 2001, Journal of Applied Phycology.