Controlling neurological disease at the edge of instability

[1]  V. Araújo Random Dynamical Systems , 2006, math/0608162.

[2]  H. Haken,et al.  A stochastic theory of phase transitions in human hand movement , 1986, Biological Cybernetics.

[3]  A. Borsellino,et al.  Reversal time distribution in the perception of visual ambiguous stimuli , 1972, Kybernetik.

[4]  吴立文 Epilepsy as a Dynamic Disease , 2004 .

[5]  H. Haken,et al.  A theoretical model of phase transitions in human hand movements , 2004, Biological Cybernetics.

[6]  J. D. Hunter,et al.  Amplitude and frequency dependence of spike timing: implications for dynamic regulation. , 2003, Journal of neurophysiology.

[7]  John G. Milton,et al.  Delays, Scaling and the Acquisition of Motor Skill , 2003 .

[8]  S. Chkhenkeli Direct Deep-Brain Stimulation: First Steps Towards the Feedback Control of Seizures , 2003 .

[9]  John G. Milton,et al.  Insights into Seizure Propagation from Axonal Conduction Times , 2003 .

[10]  Frank Moss,et al.  Unstable Periodic Orbits (UPOs) and Chaos Control in Neural Systems , 2003 .

[11]  J. Milton,et al.  Epilepsy as a Dynamic Disease , 2003 .

[12]  J. Hetling Prospects for Building a Therapeutic Cortical Stimulator , 2003 .

[13]  John G. Milton,et al.  Aborting Seizures with a Single Stimulus: The Case for Multistability , 2003 .

[14]  John G. Milton,et al.  Dynamic Epileptic Systems Versus Static Epileptic Foci , 2003 .

[15]  John G Milton,et al.  On-off intermittency in a human balancing task. , 2002, Physical review letters.

[16]  R. Lesser,et al.  Optimizing Parameters for Terminating Cortical Afterdischarges with Pulse Stimulation , 2002, Epilepsia.

[17]  Stefan Schaal,et al.  Forward models in visuomotor control. , 2002, Journal of neurophysiology.

[18]  L. Cohen,et al.  Transitions between dynamical states of differing stability in the human brain , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[19]  R. Segev,et al.  Long term behavior of lithographically prepared in vitro neuronal networks. , 2002, Physical review letters.

[20]  Joao Antonio Pereira,et al.  Linked: The new science of networks , 2002 .

[21]  H. S,et al.  Scale-invariant correlations in the biological and social sciences , 2002 .

[22]  J. D. Hunter,et al.  Synaptic Heterogeneity and Stimulus-Induced Modulation of Depression in Central Synapses , 2001, The Journal of Neuroscience.

[23]  Michael C. Mackey,et al.  Neural ensemble coding and statistical periodicity: Speculations on the operation of the mind's eye , 2000, Journal of Physiology-Paris.

[24]  J. Milton,et al.  Multistability in recurrent neural loops arising from delay. , 2000, Journal of neurophysiology.

[25]  Eugene M. Izhikevich,et al.  Neural excitability, Spiking and bursting , 2000, Int. J. Bifurc. Chaos.

[26]  Theo Geisel,et al.  The ecology of gaze shifts , 2000, Neurocomputing.

[27]  J. Milton,et al.  Epilepsy: multistability in a dynamic disease , 2000 .

[28]  Ohira,et al.  Delayed stochastic systems , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  R. Lesser,et al.  Brief bursts of pulse stimulation terminate afterdischarges caused by cortical stimulation , 1999, Neurology.

[30]  K Pakdaman,et al.  Metastability for delayed differential equations. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  D. Turcotte,et al.  Self-organized criticality , 1999 .

[32]  A. Longtin,et al.  Small delay approximation of stochastic delay differential equations , 1999 .

[33]  P. Bak,et al.  Learning from mistakes , 1997, Neuroscience.

[34]  Gabriele Bleckert,et al.  The Stochastic Brusselator: Parametric Noise Destroys Hoft Bifurcation , 1999 .

[35]  N. Kopell Chains of coupled oscillators , 1998 .

[36]  J. D. Hunter,et al.  Resonance effect for neural spike time reliability. , 1998, Journal of neurophysiology.

[37]  Daniel M. Wolpert,et al.  Making smooth moves , 2022 .

[38]  Wolf Bayer,et al.  Oscillation Types and Bifurcations of a Nonlinear Second-Order Differential-Difference Equation , 1998 .

[39]  Khashayar Pakdaman,et al.  Effect of delay on the boundary of the basin of attraction in a system of two neurons , 1998, Neural Networks.

[40]  M. Casdagli,et al.  Nonstationarity in epileptic EEG and implications for neural dynamics. , 1998, Mathematical biosciences.

[41]  J. Glanz,et al.  Mastering the Nonlinear Brain , 1997, Science.

[42]  H. Othmer,et al.  Case Studies in Mathematical Modeling: Ecology, Physiology, and Cell Biology , 1997 .

[43]  J. Milton,et al.  Noise-induced transitions in human postural sway. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[44]  T. Sejnowski,et al.  Control of Spatiotemporal Coherence of a Thalamic Oscillation by Corticothalamic Feedback , 1996, Science.

[45]  A. Grinvald,et al.  Dynamics of Ongoing Activity: Explanation of the Large Variability in Evoked Cortical Responses , 1996, Science.

[46]  Thomas M. Antonsen,et al.  On-off intermittency: power spectrum and fractal properties of time series , 1996 .

[47]  P. A. Prince,et al.  Lévy flight search patterns of wandering albatrosses , 1996, Nature.

[48]  J. Milton,et al.  NOISE, MULTISTABILITY, AND DELAYED RECURRENT LOOPS , 1996 .

[49]  D. A. Baxter,et al.  Bistability and its regulation by serotonin in the endogenously bursting neuron R15 in Aplysia. , 1996, Journal of neurophysiology.

[50]  Karin Hinzer,et al.  Encoding with Bursting, Subthreshold Oscillations, and Noise in Mammalian Cold Receptors , 1996, Neural Computation.

[51]  Foss,et al.  Multistability and delayed recurrent loops. , 1996, Physical review letters.

[52]  J. Milton Dynamics of small neural populations , 1996 .

[53]  Sue Ann Campbell,et al.  Complex dynamics and multistability in a damped harmonic oscillator with delayed negative feedback. , 1995, Chaos.

[54]  Ding,et al.  Distribution of the first return time in fractional Brownian motion and its application to the study of on-off intermittency. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[55]  John Milton,et al.  Dynamic diseases in neurology and psychiatry. , 1995, Chaos.

[56]  A. Opstal Dynamic Patterns: The Self-Organization of Brain and Behavior , 1995 .

[57]  M. Stadler,et al.  Ambiguity in Mind and Nature , 1995 .

[58]  John G. Milton,et al.  Limit cycles, tori, and complex dynamics in a second-order differential equation with delayed negative feedback , 1995 .

[59]  Frank Moss,et al.  STOCHASTIC RESONANCE: TUTORIAL AND UPDATE , 1994 .

[60]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[61]  J. Collins,et al.  Random walking during quiet standing. , 1994, Physical review letters.

[62]  Bard Ermentrout,et al.  Learning of Phase Lags in Coupled Neural Oscillators , 1994, Neural Computation.

[63]  Platt,et al.  Characterization of on-off intermittency. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[64]  Robert Miller,et al.  WHAT IS THE CONTRIBUTION OF AXONAL CONDUCTION DELAY TO TEMPORAL STRUCTURE IN BRAIN DYNAMICS , 1994 .

[65]  T. Elbert,et al.  Oscillatory Event-Related Brain Dynamics , 1994, NATO ASI Series.

[66]  Leo P. Kadanoff,et al.  From order to chaos II : essays : critical, chaotic and otherwise , 1993 .

[67]  D. Durand Ictal Patterns in Experimental Models of Epilepsy , 1993, Journal of clinical neurophysiology : official publication of the American Electroencephalographic Society.

[68]  Michael C. Mackey,et al.  Solution multistability in first-order nonlinear differential delay equations. , 1993, Chaos.

[69]  Spiegel,et al.  On-off intermittency: A mechanism for bursting. , 1993, Physical review letters.

[70]  Jack D. Cowan,et al.  Spiral Waves in Integrate-and-Fire Neural Networks , 1992, NIPS.

[71]  A. Fuchs,et al.  A phase transition in human brain and behavior , 1992 .

[72]  Longtin Noise-induced transitions at a Hopf bifurcation in a first-order delay-differential equation. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[73]  A S Gevins,et al.  Neurocognitive Networks of the Human Brain a , 1991, Annals of the New York Academy of Sciences.

[74]  Bauer,et al.  Decay of ordered and chaotic systems. , 1990, Physical review letters.

[75]  D. Sornette,et al.  Coarse-grained properties of the chaotic trajectories in the stadium , 1990 .

[76]  Longtin,et al.  Noise and critical behavior of the pupil light reflex at oscillation onset. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[77]  A Longtin,et al.  Complex dynamics and noise in simple neural networks with delayed mixed feedback. , 1990, Biomedica biochimica acta.

[78]  M C Mackey,et al.  A deterministic approach to survival statistics , 1990, Journal of mathematical biology.

[79]  L Glass,et al.  Complex dynamics and bifurcations in neurology. , 1989, Journal of theoretical biology.

[80]  G. Stépán Retarded dynamical systems : stability and characteristic functions , 1989 .

[81]  J Rinzel,et al.  Threshold for repetitive activity for a slow stimulus ramp: a memory effect and its dependence on fluctuations. , 1988, Biophysical journal.

[82]  J Gotman,et al.  Timing of Seizure Recurrence in Adult Epileptic Patients: A Statistical Analysis , 1987, Epilepsia.

[83]  F. Morrell,et al.  Secondary epileptogenesis in man. , 1985, Archives of neurology.

[84]  J. Kelso Phase transitions and critical behavior in human bimanual coordination. , 1984, The American journal of physiology.

[85]  U. an der Heiden,et al.  The dynamics of recurrent inhibition , 1984, Journal of mathematical biology.

[86]  J. Gotman Measurement of small time differences between EEG channels: method and application to epileptic seizure propagation. , 1983, Electroencephalography and clinical neurophysiology.

[87]  Michael C. Mackey,et al.  The dynamics of production and destruction: Analytic insight into complex behavior , 1982 .

[88]  A. Winfree The geometry of biological time , 1991 .

[89]  J. Rinzel,et al.  Control of repetitive firing in squid axon membrane as a model for a neuroneoscillator. , 1980, The Journal of physiology.

[90]  Y. Pomeau,et al.  Intermittent transition to turbulence in dissipative dynamical systems , 1980 .

[91]  U. an der Heiden,et al.  Delays in physiological systems , 1979 .

[92]  L. Glass,et al.  PATHOLOGICAL CONDITIONS RESULTING FROM INSTABILITIES IN PHYSIOLOGICAL CONTROL SYSTEMS * , 1979, Annals of the New York Academy of Sciences.

[93]  U. an der Heiden Delays in physiological systems. , 1979, Journal of mathematical biology.

[94]  Takashi Kunisawa,et al.  Critical Slowing-Down near the Transition Region from the Resting to Time-Ordered States in Squid Giant Axons , 1978 .

[95]  Robert M. May,et al.  Dynamical diseases , 1978, Nature.

[96]  L. Glass,et al.  Oscillation and chaos in physiological control systems. , 1977, Science.

[97]  J. Pincus Experimental Models of Epilepsy. A Manual for the Laboratory Worker , 1974, The Yale Journal of Biology and Medicine.

[98]  A A Verveen,et al.  Membrane noise. , 1974, Progress in biophysics and molecular biology.

[99]  Bruce W. Knight,et al.  Dynamics of Encoding in a Population of Neurons , 1972, The Journal of general physiology.

[100]  D. Purpura,et al.  Experimental Models of Epilepsy--a Manual for the Laboratory Worker , 1972 .

[101]  H. Jasper,et al.  Basic Mechanisms of the Epilepsies , 1971, Journal of the Royal College of Physicians of London.

[102]  J. L. Bogdanoff,et al.  Experiments with an Inverted Pendulum Subject to Random Parametric Excitation , 1965 .

[103]  John L. Bogdanoff,et al.  Influence on the Behavior of a Linear Dynamical System of Some Imposed Rapid Motions of Small Amplitude , 1962 .

[104]  LAWRENCE STARK,et al.  Pupil Unrest: An Example of Noise in a Biological Servomechanism , 1958, Nature.

[105]  R.N.DeJ. Epilepsy and the Functional Anatomy of the Human Brain , 1954, Neurology.

[106]  Sher ry Folsom-Meek,et al.  Human Performance , 2020, Nature.

[107]  H. Kramers Brownian motion in a field of force and the diffusion model of chemical reactions , 1940 .