Radiation induced point- and cluster - related defects with strong impact to damage properties of silicon detectors

[1]  D. Eckstein,et al.  Annealing study of a bistable cluster defect , 2010 .

[2]  M. Vos Tracking at the International Linear Collider , 2008 .

[3]  R. Fleming,et al.  A bistable divacancylike defect in silicon damage cascades , 2008 .

[4]  G. Grübel X-Ray Photon Correlation Spectroscopy at the European X-Ray Free-Electron Laser (XFEL) facility , 2008 .

[5]  I. Pintilie,et al.  Cluster related hole traps with enhanced-field-emission-the source for long term annealing in hadron irradiated Si diodes , 2008 .

[6]  G. Kramberger Recent results from CERN RD50 collaboration , 2007 .

[7]  G. Kramberger,et al.  Radiation damage studies on MCz and standard and oxygen enriched epitaxial silicon devices , 2007 .

[8]  Gregor Kramberger,et al.  Impact of annealing of trapping times on charge collection in irradiated silicon detectors , 2007 .

[9]  P. J. Cooper,et al.  Effects of clustering on the properties of defects in neutron irradiated silicon , 2007 .

[10]  V. Eremin,et al.  Localized energy levels generated in Magnetic Czochralski silicon by proton irradiation and their influence on the sign of space charge density , 2007 .

[11]  V. Eremin,et al.  Czochralski silicon detectors irradiated with 24 GeV/c and 10 MeV protons , 2006 .

[12]  Nicola Zorzi,et al.  Irradiation effects on thin epitaxial silicon detectors , 2006 .

[13]  I. Dolenc,et al.  Epitaxial silicon detectors for particle tracking—Radiation tolerance at extreme hadron fluences , 2006 .

[14]  M. Moll Radiation Tolerant Semiconductor Sensors for Tracking Detectors , 2006 .

[15]  R. Krause-Rehberg,et al.  Radiation damage in silicon exposed to high-energy protons , 2006 .

[16]  G. Kramberger,et al.  Radiation tolerance of epitaxial silicon detectors at very large proton fluences , 2006 .

[17]  V. Cindro,et al.  Charge collection properties of heavily irradiated epitaxial silicon detectors , 2005 .

[18]  B. S. Avset,et al.  Kinetics of divacancy annealing and divacancy-oxygen formation in oxygen-enriched high-purity silicon , 2005 .

[19]  D. Bisello,et al.  Recent advancements in the development of radiation hard semiconductor detectors for S-LHC , 2005 .

[20]  G. Lutz,et al.  High energy proton damage effects in thin high resistivity FZ silicon detectors , 2005 .

[21]  D. Bisello,et al.  Processing and first characterization of detectors made with high resistivity n- and p-type Czochralski silicon , 2005 .

[22]  D. Bisello,et al.  Development of radiation tolerant semiconductor detectors for the Super-LHC. , 2005 .

[23]  J. Härkönen,et al.  Radiation hardness of Czochralski silicon, Float Zone silicon and oxygenated Float Zone silicon studied by low energy protons , 2004 .

[24]  G. Kramberger,et al.  Second-order generation of point defects in highly irradiated float zone silicon-annealing studies , 2003 .

[25]  Giovanni Alfieri,et al.  Evidence for identification of the divacancy-oxygen center in Si , 2003 .

[26]  I. Pintilie,et al.  Results on defects induced by 60Co gamma irradiation in standard and oxygen-enriched silicon , 2003 .

[27]  I. Pintilie,et al.  Bulk damage effects in standard and oxygen-enriched silicon detectors induced by 60Co-gamma radiation , 2003 .

[28]  I. Pintilie,et al.  Second-order generation of point defects in gamma-irradiated float-zone silicon, an explanation for “type inversion” , 2003 .

[29]  M. Zielinski,et al.  Extremely deep SIMS profiling: oxygen in FZ silicon , 2003 .

[30]  Mika Huhtinen,et al.  Simulation of non-ionising energy loss and defect formation in silicon , 2002 .

[31]  I. Pintilie,et al.  Close to midgap trapping level in 60Co gamma irradiated silicon detectors , 2002 .

[32]  A. Hallén,et al.  Formation of a double acceptor center during divacancy annealing in low-doped high-purity oxygenated Si , 2002 .

[33]  S. Stapnes,et al.  Physics potential and experimental challenges of the LHC luminosity upgrade , 2002, hep-ph/0204087.

[34]  P. Ciampolini,et al.  Radiation hard silicon detectors—developments by the RD48 (ROSE) collaboration , 2001 .

[35]  P. Ciampolini,et al.  Developments for radiation hard silicon detectors by defect engineering—results by the CERN RD48 (ROSE) Collaboration , 2001 .

[36]  Zheng Li,et al.  HTLT oxygenated silicon detectors: Radiation hardness and long term stability , 2001 .

[37]  L. Pintilie,et al.  Thermally stimulated current method applied on diodes with high concentration of deep trapping levels , 2001 .

[38]  Nieminen,et al.  Structures of thermal double donors in silicon , 2000, Physical review letters.

[39]  Arie Ruzin,et al.  Comparison of radiation damage in silicon induced by proton and neutron irradiation , 1999 .

[40]  B. Svensson,et al.  Kinetic study of oxygen dimer and thermal donor formation in silicon , 1998 .

[41]  B. MacEvoy Defect evolution in silicon detector material , 1997 .

[42]  H. Feick,et al.  COMPARISON OF DEFECTS PRODUCED BY FAST NEUTRONS AND 60CO-GAMMAS IN HIGH-RESISTIVITY SILICON DETECTORS USING DEEP-LEVEL TRANSIENT SPECTROSCOPY , 1997 .

[43]  S. Watts,et al.  A new model for generation-recombination in silicon depletion regions after neutron irradiation , 1996 .

[44]  Ferenc Masszi,et al.  Lifetime in proton irradiated silicon , 1996 .

[45]  Corbett,et al.  Divacancy acceptor levels in ion-irradiated silicon. , 1991, Physical review. B, Condensed matter.

[46]  P. Wagner,et al.  Thermal double donors in silicon , 1989 .

[47]  A. Chantre Metastable thermal donor states in silicon , 1987 .

[48]  O. Awadelkarim,et al.  Deep‐level transient spectroscopy and photoluminescence studies of electron‐irradiated Czochralski silicon , 1986 .

[49]  V. Markevich,et al.  Electrical and Optical Characterization of Thermal Donors in Silicon , 1986 .

[50]  S. D. Brotherton,et al.  Defect production and lifetime control in electron and γ‐irradiated silicon , 1982 .

[51]  D. Taylor Mechanisms of Radiation Effects in Electronic Materials , 1981 .

[52]  Jacobus Hendricus van Lint,et al.  Mechanisms of Radiation Effects in Electronic Materials (Volume 1) , 1980 .

[53]  James W. Corbett,et al.  EPR studies of defects in electron-irradiated silicon: A triplet state of vacancy-oxygen complexes , 1976 .

[54]  Philip W. Anderson,et al.  Model for the Electronic Structure of Amorphous Semiconductors , 1975 .

[55]  J. L. Hartke The Three‐Dimensional Poole‐Frenkel Effect , 1968 .

[56]  G. D. Watkins,et al.  DEFECTS IN IRRADIATED SILICON: ELECTRON PARAMAGNETIC RESONANCE OF THE DIVACANCY , 1965 .

[57]  G. D. Watkins,et al.  Defects in Irradiated Silicon: Electron Paramagnetic Resonance and Electron-Nuclear Double Resonance of the Si-E Center , 1964 .

[58]  G. D. Watkins,et al.  Defects in Irradiated Silicon. I. Electron Spin Resonance of the Si-A Center , 1961 .

[59]  I. Pintilie,et al.  Stable radiation-induced donor generation and its influence on the radiation tolerance of silicon diodes , 2006 .

[60]  Michael Moll,et al.  Relation between microscopic defects and macroscopic changes in silicon detector properties after hadron irradiation , 2002 .

[61]  V. Markevich,et al.  Complexes of the self-interstitial with oxygen in irradiated silicon:: a new assignment of the 936 cm−1 band , 2001 .

[62]  Michael Moll,et al.  Radiation damage in silicon particle detectors: Microscopic defects and macroscopic properties , 1999 .

[63]  P. Bräunlich,et al.  Thermally stimulated relaxation in solids , 1979 .

[64]  P. Bräunlich Introduction and basic principles , 1979 .

[65]  J. Corbett,et al.  Photo-EPR experiments on defects in irradiated silicon , 1976 .