Theory and modelling of constant-Q P- and S-waves using fractional spatial derivatives

I have developed and solved the constant-Q model for the attenuation of P- and S-waves in the time domain using a new modeling algorithm based on fractional derivatives. The model requires time derivatives of order m 2 applied to the strain components, where m 0,1,... and 1/tan 1 1/Q, with Q the P-wave or S-wave quality factor. The derivatives are computed with the Grunwald-Letnikov and central-difference fractional approximations, which are extensions of the standard finite-difference operators for derivatives of integer order. The modeling uses the Fourier method to compute the spatial derivatives, and therefore can handle complex geometries and general materialproperty variability. I verified the results by comparison with the 2D analytical solution obtained for wave propagation in homogeneous Pierre Shale. Moreover, the modeling algorithm was used to compute synthetic seismograms in heterogeneous media corresponding to a crosswell seismic experi ment.

[1]  M. N. Toksoz,et al.  Seismic wave attenuation , 1981 .

[2]  S. Hestholm 3‐D finite‐difference viscoelastic wave modelling including surface topography , 1998 .

[3]  José M. Carcione,et al.  Time-domain Modeling of Constant-Q Seismic Waves Using Fractional Derivatives , 2002 .

[4]  R. Christensen,et al.  Theory of Viscoelasticity , 1971 .

[5]  R. L. Mills,et al.  ATTENUATION OF SHEAR AND COMPRESSIONAL WAVES IN PIERRE SHALE , 1958 .

[6]  A. Hanyga,et al.  Some effects of the memory kernel singularity on wave propagation and inversion in viscoelastic media - II. Inversion , 2004 .

[7]  REPRESENTATION OF MATCHED-LAYER KERNELS WITH VISCOELASTIC MECHANICAL MODELS , 2012 .

[8]  Andrzej Hanygad,et al.  Multidimensional solutions of time-fractional diffusion-wave equations , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[9]  Ian Naismith Sneddon,et al.  The generation of waves in an infinite elastic solid by variable body forces , 1956, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.

[10]  V. Harrison Survey of general and applied rheology , 1950 .

[11]  Fellah,et al.  Transient acoustic wave propagation in rigid porous media: a time-domain approach , 2000, The Journal of the Acoustical Society of America.

[12]  José M. Carcione,et al.  Theory and modeling of constant-Q P- and S-waves using fractional time derivatives , 2009 .

[13]  Tieyuan Zhu,et al.  Modeling acoustic wave propagation in heterogeneous attenuating media using decoupled fractional Laplacians , 2014 .

[14]  Ronnie Kosloff,et al.  Wave propagation simulation in a linear viscoacoustic medium , 1988 .

[15]  Francesco Mainardi,et al.  Linear models of dissipation in anelastic solids , 1971 .

[16]  Jian-Fei Lu,et al.  Wave field simulation for heterogeneous porous media with singular memory drag force , 2005 .

[17]  Bengt Fornberg,et al.  A practical guide to pseudospectral methods: Introduction , 1996 .

[18]  J. Carcione Wave propagation in anisotropic linear viscoelastic media: theory and simulated wavefields , 1990 .

[19]  J. Carcione Staggered mesh for the anisotropic and viscoelastic wave equation , 1999 .

[20]  R. Gorenflo,et al.  Fractional Calculus: Integral and Differential Equations of Fractional Order , 2008, 0805.3823.

[21]  J. M. Carcionea,et al.  Effects of pressure and saturating fluid on wave velocity and attenuation in anisotropic rocks , 2003 .

[22]  W. Pilant Elastic waves in the earth , 1979 .

[23]  Jean-Pierre Berenger,et al.  A perfectly matched layer for the absorption of electromagnetic waves , 1994 .

[24]  T. Zhu,et al.  Approximating constant‐Q seismic propagation in the time domain , 2012 .

[25]  Joakim O. Blanch,et al.  Viscoelastic finite-difference modeling , 1994 .

[26]  Mark M. Meerschaert,et al.  A second-order accurate numerical method for the two-dimensional fractional diffusion equation , 2007, J. Comput. Phys..

[27]  P. C. Wuenschel DISPERSIVE BODY WAVES—AN EXPERIMENTAL STUDY , 1965 .

[28]  George A. McMechan,et al.  Composite memory variables for viscoelastic synthetic seismograms , 1995 .

[29]  Boris Gurevich,et al.  Velocity and attenuation of elastic waves in finely layered porous rocks , 1995 .

[30]  Einar Kjartansson,et al.  Constant Q-wave propagation and attenuation , 1979 .

[31]  B. Auld,et al.  Acoustic fields and waves in solids , 1973 .

[32]  G. W. Scott-Blair A survey of general and applied rheology , 1951 .

[33]  D. Bland,et al.  The Theory of Linear Viscoelasticity , 2016 .

[34]  M. Caputo,et al.  A new dissipation model based on memory mechanism , 1971 .

[35]  Vu Kim Tuan,et al.  Extrapolation to the Limit for Numerical Fractional Differentiation , 1995 .

[36]  A. Hanyga,et al.  Power-law attenuation in acoustic and isotropic anelastic media , 2003 .

[37]  B. Cox,et al.  Modeling power law absorption and dispersion for acoustic propagation using the fractional Laplacian. , 2010, The Journal of the Acoustical Society of America.

[38]  J. Dvorkin,et al.  Modeling attenuation in reservoir and nonreservoir rock , 2006 .

[39]  M. Caputo Linear Models of Dissipation whose Q is almost Frequency Independent-II , 1967 .

[40]  D. Komatitsch,et al.  Simulations of Ground Motion in the Los Angeles Basin Based upon the Spectral-Element Method , 2004 .

[41]  R. L. Mills,et al.  ATTENUATION OF SHEAR AND COMPRESSIONAL WAVES IN PIERRE SHALE , 1958 .

[42]  Stig Hestholm,et al.  Three-dimensional finite difference viscoelastic wave modelling including surface topography , 1999 .

[43]  I. Podlubny Fractional differential equations , 1998 .

[44]  José M. Carcione,et al.  A generalization of the Fourier pseudospectral method , 2010 .

[45]  J. Carcione,et al.  Effects of pressure and saturating fluid on wave velocity and attenuation in anisotropic rocks , 2003 .

[46]  Edip Baysal,et al.  Forward modeling by a Fourier method , 1982 .

[47]  S. Holm,et al.  Fractional Laplacian time-space models for linear and nonlinear lossy media exhibiting arbitrary frequency power-law dependency. , 2004, The Journal of the Acoustical Society of America.

[48]  G. McMechan,et al.  Causes and reduction of numerical artefacts in pseudo-spectral wavefield extrapolation , 1996 .

[49]  Francesco Mainardi,et al.  Seismic pulse propagation with constant Q and stable probability distributions , 1997, 1008.1341.