Robust $\mathcal{H}_{\infty}$ decentralized dynamic control for synchronization of a complex dynamical network with randomly occurring uncertainties

This paper considers synchronization problem of an uncertain complex dynamical network. The norm-bounded uncertainties enter into the complex dynamical network in randomly ways, and such randomly occurring uncertainties (ROUs) obey certain mutually uncorrelated Bernoulli distributed white noise sequences. Under the circumstances, a robust $\mathcal{H}_{\infty}$ decentralized dynamic feedback controller is designed to achieve asymptotic synchronization of the network. Based on Lyapunov stability theory and linear matrix inequality (LMI) framework, the existence condition for feasible controllers is derived in terms of LMIs. Finally, the proposed method is applied to a numerical example in order to show the effectiveness of our result.

[1]  Albert,et al.  Emergence of scaling in random networks , 1999, Science.

[2]  Yuhua Xu,et al.  Topology identification of the modified complex dynamical network with non-delayed and delayed coupling , 2012 .

[3]  Jun Hu,et al.  Robust Sliding Mode Control for Discrete Stochastic Systems With Mixed Time Delays, Randomly Occurring Uncertainties, and Randomly Occurring Nonlinearities , 2012, IEEE Transactions on Industrial Electronics.

[4]  Shaohui Sun,et al.  The synchronization of general complex dynamical network via pinning control , 2012 .

[5]  Duncan J. Watts,et al.  Collective dynamics of ‘small-world’ networks , 1998, Nature.

[6]  Ju H. Park,et al.  Hinfinity synchronization of time-delayed chaotic systems , 2008, Appl. Math. Comput..

[7]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[8]  L. Ghaoui,et al.  History of linear matrix inequalities in control theory , 1994, Proceedings of 1994 American Control Conference - ACC '94.

[9]  Guo-Ping Jiang,et al.  A State-Observer-Based Approach for Synchronization in Complex Dynamical Networks , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[10]  C. Scherer,et al.  Multiobjective output-feedback control via LMI optimization , 1997, IEEE Trans. Autom. Control..

[11]  Ju H. Park Convex Optimization Approach to Dynamic Output Feedback Control for Delay Differential Systems of Neutral Type , 2005 .

[12]  M. Newman,et al.  Renormalization Group Analysis of the Small-World Network Model , 1999, cond-mat/9903357.

[13]  Ju H. Park,et al.  Decentralized dynamic output feedback controller design for guaranteed cost stabilization of large-scale discrete-delay systems , 2004, Appl. Math. Comput..

[14]  Zhisheng Duan,et al.  Study of delay-independent decentralized guaranteed cost control for large scale systems , 2011 .

[15]  Shengyuan Xu,et al.  Output feedback stabilization for delayed large‐scale stochastic systems with markovian jumping parameters , 2009 .

[16]  Shengyuan Xu,et al.  Robust global synchronization of complex networks with neutral-type delayed nodes , 2010, Appl. Math. Comput..

[17]  Qunjiao Zhang,et al.  Projective and lag synchronization between general complex networks via impulsive control , 2012 .

[18]  S. N. Dorogovtsev,et al.  Evolution of networks , 2001, cond-mat/0106144.

[19]  B. Bollobás The evolution of random graphs , 1984 .

[20]  Linying Xiang,et al.  On pinning synchronization of general coupled networks , 2011 .

[21]  Chunguang Li,et al.  Synchronization in general complex dynamical networks with coupling delays , 2004 .

[22]  Hamid Reza Karimi,et al.  Robust synchronization and fault detection of uncertain master-slave systems with mixed time-varying delays and nonlinear perturbations , 2011 .

[23]  Ju H. Park,et al.  Adaptive lag synchronization for uncertain complex dynamical network with delayed coupling , 2012, Appl. Math. Comput..

[24]  Chen Xu,et al.  Cluster synchronization of nonlinearly-coupled complex networks with nonidentical nodes and asymmetrical coupling matrix , 2012 .

[25]  Ju H. Park,et al.  The ℋ∞ synchronization of nonlinear Bloch systems via dynamic feedback control approach , 2011 .

[26]  Tieshan Li,et al.  Decentralized adaptive neural control of nonlinear systems with unknown time delays , 2012 .

[27]  Mark E. J. Newman,et al.  The Structure and Function of Complex Networks , 2003, SIAM Rev..

[28]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[29]  D. H. Ji,et al.  Synchronization of neutral complex dynamical networks with coupling time-varying delays , 2011 .

[30]  Jinde Cao,et al.  Synchronization of complex dynamical networks with nonidentical nodes , 2010 .

[31]  Ju H. Park,et al.  Synchronization criterion for Lur'e type complex dynamical networks with time-varying delay , 2010 .

[32]  S. Strogatz Exploring complex networks , 2001, Nature.