On error bounds for the Gautschi-type exponential integrator applied to oscillatory second-order differential equations
暂无分享,去创建一个
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] C. Lubich,et al. On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .
[3] Linda R. Petzold,et al. Numerical solution of highly oscillatory ordinary differential equations , 1997, Acta Numerica.
[4] Ernst Hairer,et al. Modulated Fourier Expansions of Highly Oscillatory Differential Equations , 2003, Found. Comput. Math..
[5] Marlis Hochbruck,et al. Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..
[6] Uri M. Ascher,et al. On Some Difficulties in Integrating Highly Oscillatory Hamiltonian Systems , 1999, Computational Molecular Dynamics.
[7] Arieh Iseries,et al. Think globally, act locally: solving highly-oscillatory ordinary differential equations , 2002 .
[8] J. Izaguirre. Longer Time Steps for Molecular Dynamics , 1999 .
[9] Marlis Hochbruck,et al. A Gautschi-type method for oscillatory second-order differential equations , 1999, Numerische Mathematik.
[10] Marlis Hochbruck,et al. A Bunch of Time Integrators for Quantum/Classical Molecular Dynamics , 1999, Computational Molecular Dynamics.
[11] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[12] Volker Grimm,et al. Exponentielle Integratoren als Lange-Zeitschritt-Verfahren für oszillatorsiche Differentialgleichungen zweiter Ordnung , 2002 .
[13] Ernst Hairer,et al. Long-Time Energy Conservation of Numerical Methods for Oscillatory Differential Equations , 2000, SIAM J. Numer. Anal..
[14] Robert D. Skeel,et al. Long-Time-Step Methods for Oscillatory Differential Equations , 1998, SIAM J. Sci. Comput..