Almost-extreme Khovanov spectra

We introduce a functor from the cube to the Burnside 2-category and prove that it is equivalent to the Khovanov spectrum given by Lipshitz and Sarkar in the almost-extreme quantum grading. We provide a decomposition of this functor into simplicial complexes. This decomposition allows us to compute the homotopy type of the almost-extreme Khovanov spectra of diagrams without alternating pairs.

[1]  T. Lawson,et al.  Khovanov homotopy type, Burnside category and products , 2015, Geometry & Topology.

[2]  Extremal Khovanov homology of Turaev genus one links , 2018, Fundamenta Mathematicae.

[3]  J. Przytycki,et al.  Geometric realization of the almost-extreme Khovanov homology of semiadequate links , 2018, Geometriae Dedicata.

[4]  Igor Frenkel,et al.  A Categorification of the Jones Polynomial , 2008 .

[5]  Dror Bar-Natan On Khovanov’s categorification of the Jones polynomial , 2002 .

[6]  O. Viro Khovanov homology, its definitions and ramifications , 2004 .

[7]  Federico Cantero Mor'an,et al.  Extreme Khovanov spectra , 2018, Revista Matemática Iberoamericana.

[8]  R. Sazdanovic,et al.  Torsion in Khovanov homology of semi-adequate links , 2012, 1210.5254.

[9]  Tyler Lawson,et al.  The cube and the burnside category , 2015, 1505.00512.

[10]  J. González-Meneses,et al.  A geometric description of the extreme Khovanov cohomology , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[11]  J. Przytycki HOMOTOPY TYPE OF CIRCLE GRAPHS COMPLEXES MOTIVATED BY EXTREME KHOVANOV HOMOLOGY JOZEF H. PRZYTYCKI AND MARITHANIA SILVERO , 2016 .

[12]  Robert Lipshitz,et al.  SPATIAL REFINEMENTS AND KHOVANOV HOMOLOGY , 2017, Proceedings of the International Congress of Mathematicians (ICM 2018).

[13]  R. Sazdanovic,et al.  Extremal Khovanov Homology and the Girth of a Knot , 2020, Journal of Knot Theory and Its Ramifications.

[14]  Mikhail Khovanov A categorification of the Jones polynomial , 1999 .

[15]  A Khovanov stable homotopy type , 2011, 1112.3932.