Uniquely Edge-3-Colorable Graphs and Snarks

Abstract. A cubic graph G is uniquely edge-3-colorable if G has precisely one 1-factorization. It is proved in this paper, if a uniquely edge-3-colorable, cubic graph G is cyclically 4-edge-connected, but not cyclically 5-edge-connected, then G must contain a snark as a minor. This is an approach to a conjecture that every triangle free uniquely edge-3-colorable cubic graph must have the Petersen graph as a minor. Fiorini and Wilson (1976) conjectured that every uniquely edge-3-colorable planar cubic graph must have a triangle. It is proved in this paper that every counterexample to this conjecture is cyclically 5-edge-connected and that in a minimal counterexample to the conjecture, every cyclic 5-edge-cut is trivial (an edge-cut T of G is cyclic if no component of G\T is acyclic and a cyclic edge-cut T is trivial if one component of G\T is a circuit of length |T|).