The seasonal cycle of submesoscale flows

The seasonal cycle of submesoscale flows in the upper ocean is investigated in an idealised model domain analogous to mid-latitude open ocean regions. Submesoscale processes become much stronger as the resolution is increased, though with limited evidence for convergence of the solutions. Frontogenetical processes increase horizontal buoyancy gradients when the mixed layer is shallow in summer, while overturning instabilities weaken the horizontal buoyancy gradients as the mixed layer deepens in winter. The horizontal wavenumber spectral slopes of surface temperature and velocity are steep in summer and then shallow in winter. This is consistent with stronger mixed layer instabilities developing as the mixed layer deepens and energising the submesoscale. The degree of geostrophic balance falls as the resolution is made finer, with evidence for stronger non-linear and high-frequency processes becoming more important as the mixed layer deepens. Ekman buoyancy fluxes can be much stronger than surface cooling and are locally dominant in setting the stratification and the potential vorticity at fronts, particularly in the early winter. Up to 30% of the mixed layer volume in winter has negative potential vorticity and symmetric instability is predicted inside mesoscale eddies as well as in the frontal regions outside of the vortices.

[1]  R. Samelson Linear instability of a mixed‐layer front , 1993 .

[2]  B. Arbic,et al.  On quadratic bottom drag, geostrophic turbulence, and oceanic mesoscale eddies , 2008 .

[3]  J. W. Zhang,et al.  Eddy-induced mixed layer shallowing and mixed layer/thermocline exchange , 2000 .

[4]  James C. McWilliams,et al.  Mesoscale to submesoscale transition in the California current system. Part III: Energy balance and flux , 2008 .

[5]  R. Samelson,et al.  Baroclinic Frontal Instabilities and Turbulent Mixing in the Surface Boundary Layer. Part I: Unforced Simulations , 2012 .

[6]  Mehmet Ilicak,et al.  Spurious dianeutral mixing and the role of momentum closure , 2012 .

[7]  Patrice Klein,et al.  Oceanic Restratification Forced by Surface Frontogenesis , 2006 .

[8]  M. Prather Numerical advection by conservation of second-order moments. [for trace element spatial distribution and chemical interaction in atmosphere] , 1986 .

[9]  J. McWilliams,et al.  Submesoscale Cold Filaments in the Gulf Stream , 2014 .

[10]  M. Alford,et al.  Sub‐mesoscale lateral density structure in the oceanic surface mixed layer , 2006 .

[11]  James C. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part II: Frontal Processes , 2008 .

[12]  Baylor Fox-Kemper,et al.  Can Large Eddy Simulation Techniques Improve Mesoscale Rich Ocean Models , 2013 .

[13]  Elizabeth C. Kent,et al.  A NEW AIR―SEA INTERACTION GRIDDED DATASET FROM ICOADS WITH UNCERTAINTY ESTIMATES , 2009 .

[14]  R. Ferrari,et al.  Symmetric instability in the Gulf Stream , 2013 .

[15]  M. Spall Baroclinic Jets in Confluent Flow , 1997 .

[16]  Craig M. Lee,et al.  Enhanced Turbulence and Energy Dissipation at Ocean Fronts , 2011, Science.

[17]  Caskey,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS I . THE BASIC EXPERIMENT , 1962 .

[18]  B. Fox‐Kemper,et al.  Parameterization of Mixed Layer Eddies. Part I. Theory and Diagnosis , 2008 .

[19]  L. Thomas,et al.  On the effects of frontogenetic strain on symmetric instability and inertia–gravity waves , 2012, Journal of Fluid Mechanics.

[20]  Francis P. Bretherton,et al.  Atmospheric Frontogenesis Models: Mathematical Formulation and Solution , 1972 .

[21]  M. Levine,et al.  Observations of mixed layer restratification by onshore surface transport following wind reversal in a coastal upwelling region , 2008 .

[22]  A. Mahadevan Modeling vertical motion at ocean fronts: Are nonhydrostatic effects relevant at submesoscales? , 2006 .

[23]  B. Fox‐Kemper,et al.  Oceanic wave-balanced surface fronts and filaments , 2013, Journal of Fluid Mechanics.

[24]  Jonathan Gula,et al.  Seasonality in submesoscale turbulence , 2015, Nature Communications.

[25]  Amit Tandon,et al.  Rapid changes in mixed layer stratification driven by submesoscale instabilities and winds , 2010 .

[26]  S. Bachman,et al.  Modelling of partially-resolved oceanic symmetric instability , 2014 .

[27]  B. Ward,et al.  Evaluating Langmuir turbulence parameterizations in the ocean surface boundary layer , 2014 .

[28]  Robert Pinkel,et al.  Diurnal cycling: observations and models of the upper-ocean response to diurnal heating, cooling, and wind mixing. Technical report , 1986 .

[29]  J. McWilliams,et al.  Mesoscale to Submesoscale Transition in the California Current System. Part I: Flow Structure, Eddy Flux, and Observational Tests , 2008 .

[30]  J. Richman,et al.  Analysis of ageostrophy in strong surface eddies in the Atlantic Ocean , 2015 .

[31]  Gurvan Madec,et al.  Modifications of gyre circulation by sub-mesoscale physics , 2010 .

[32]  B. Fox‐Kemper,et al.  Symmetric and Geostrophic Instabilities in the Wave-Forced Ocean Mixed Layer , 2015 .

[33]  R. Ferrari,et al.  Frontogenesis, and the Stratification of the Surface Mixed Layer, , 2008 .

[34]  J. McWilliams,et al.  Baroclinic Frontal Arrest: A Sequel to Unstable Frontogenesis , 2011 .

[35]  Thomas W. N. Haine,et al.  Gravitational, Symmetric, and Baroclinic Instability of the Ocean Mixed Layer , 1998 .

[36]  R. Ferrari,et al.  Buoyancy and Wind-Driven Convection at Mixed Layer Density Fronts , 2010 .

[37]  T. Ringler,et al.  A framework for the evaluation of turbulence closures used in mesoscale ocean large-eddy simulations , 2012, 1207.5852.

[38]  J. Allen,et al.  A mesoscale eddy driving spatial and temporal heterogeneity in the productivity of the euphotic zone of the northeast Atlantic , 2010 .

[39]  C. Eden,et al.  Stability Analysis of the Labrador Current , 2014 .

[40]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[41]  John Marshall,et al.  Open‐ocean convection: Observations, theory, and models , 1999 .

[42]  I. Yavneh,et al.  Baroclinic Instability and Loss of Balance , 2005 .

[43]  Bo Qiu,et al.  Impact of oceanic-scale interactions on the seasonal modulation of ocean dynamics by the atmosphere , 2014, Nature Communications.

[44]  G. D. Nastrom,et al.  A Climatology of Atmospheric Wavenumber Spectra of Wind and Temperature Observed by Commercial Aircraft , 1985 .

[45]  C. Shakespeare,et al.  A generalized mathematical model of geostrophic adjustment and frontogenesis: uniform potential vorticity , 2013, Journal of Fluid Mechanics.

[46]  T. Özgökmen,et al.  Seasonality of the submesoscale dynamics in the Gulf Stream region , 2013, Ocean Dynamics.

[47]  Raffaele Ferrari,et al.  Interpreting Energy and Tracer Spectra of Upper-Ocean Turbulence in the Submesoscale Range (1–200 km) , 2013 .

[48]  Jan Kaiser,et al.  The vertical structure of upper ocean variability at the Porcupine Abyssal Plain during 2012–2013 , 2016, Journal of geophysical research. Oceans.

[49]  B. Fox‐Kemper,et al.  Hurricane wake restratification rates of one-, two- and three-dimensional processes , 2012 .

[50]  Ryan Abernathey,et al.  Controlling spurious diapycnal mixing in eddy-resolving height-coordinate ocean models – Insights from virtual deliberate tracer release experiments , 2012 .

[51]  J. Smagorinsky,et al.  GENERAL CIRCULATION EXPERIMENTS WITH THE PRIMITIVE EQUATIONS , 1963 .

[52]  S. Belcher,et al.  Characteristics of Langmuir Turbulence in the Ocean Mixed Layer , 2009 .

[53]  Craig M. Lee,et al.  Statistics of vertical vorticity, divergence, and strain in a developed submesoscale turbulence field , 2013 .

[54]  Adrian Hines,et al.  A global perspective on Langmuir turbulence in the ocean surface boundary layer , 2012 .

[55]  B. Fox‐Kemper,et al.  Langmuir–Submesoscale Interactions: Descriptive Analysis of Multiscale Frontal Spindown Simulations , 2014 .

[56]  L. Thomas,et al.  Destruction of Potential Vorticity by Winds , 2005 .

[57]  C. Garrett,et al.  Mixed Layer Restratification Due to a Horizontal Density Gradient , 1994 .

[58]  B. Fox‐Kemper,et al.  Eddy parameterization challenge suite I: Eady spindown , 2013 .

[59]  J. R. Taylor,et al.  Reduction of the usable wind‐work on the general circulation by forced symmetric instability , 2010 .

[60]  Stephen M. Griffies,et al.  Biharmonic Friction with a Smagorinsky-Like Viscosity for Use in Large-Scale Eddy-Permitting Ocean Models , 2000 .

[61]  A. Mahadevan,et al.  Effect of subgrid-scale mixing on the evolution of forced submesoscale instabilities , 2013 .

[62]  C. Bishop On the behaviour of baroclinic waves undergoing horizontal deformation. II: Error-bound amplification and Rossby wave diagnostics , 1993 .

[63]  J. McWilliams,et al.  Dynamics of wind‐forced coherent anticyclones in the open ocean , 2009 .

[64]  Giulio Boccaletti,et al.  Mixed Layer Instabilities and Restratification , 2007 .

[65]  C. Eden,et al.  Evaluating Different Parameterizations for Mixed Layer Eddy Fluxes induced by Baroclinic Instability , 2014 .

[66]  P. Stone On Non-Geostrophic Baroclinic Stability: Part II , 1970 .

[67]  L. Perelman,et al.  A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers , 1997 .

[68]  C. E. Leith,et al.  Stochastic models of chaotic systems , 1995 .