Numerical approximation of distributed order reaction-diffusion equations

In this paper an implicit scheme for the numerical approximation of the distributed order time-fractional reaction-diffusion equation with a nonlinear source term is presented. The stability and the convergence order of the numerical scheme are analysed and illustrated through some numerical examples.

[1]  Santos B. Yuste,et al.  An Explicit Finite Difference Method and a New von Neumann-Type Stability Analysis for Fractional Diffusion Equations , 2004, SIAM J. Numer. Anal..

[2]  M. L. Morgado,et al.  Nonpolynomial collocation approximation of solutions to fractional differential equations , 2013 .

[3]  Fawang Liu,et al.  A Fourier method for the fractional diffusion equation describing sub-diffusion , 2007, J. Comput. Phys..

[4]  Chuanju Xu,et al.  Finite difference/spectral approximations for the time-fractional diffusion equation , 2007, J. Comput. Phys..

[5]  L. Richardson,et al.  Atmospheric Diffusion Shown on a Distance-Neighbour Graph , 1926 .

[6]  HongGuang Sun,et al.  A semi-discrete finite element method for a class of time-fractional diffusion equations , 2011, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[7]  I. M. Sokolov,et al.  Distributed-Order Fractional Kinetics , 2004 .

[8]  Diego A. Murio,et al.  Implicit finite difference approximation for time fractional diffusion equations , 2008, Comput. Math. Appl..

[9]  Neville J. Ford,et al.  An implicit finite difference approximation for the solution of the diffusion equation with distributed order in time , 2015 .

[10]  Zhi-Zhong Sun,et al.  A compact finite difference scheme for the fractional sub-diffusion equations , 2011, J. Comput. Phys..

[11]  Fawang Liu,et al.  Numerical method and analytical technique of the modified anomalous subdiffusion equation with a nonlinear source term , 2009, J. Comput. Appl. Math..

[12]  M. Naber DISTRIBUTED ORDER FRACTIONAL SUB-DIFFUSION , 2003, math-ph/0311047.

[13]  V. Anh,et al.  Fractional diffusion and fractional heat equation , 2000, Advances in Applied Probability.

[14]  Mingrong Cui,et al.  Compact finite difference method for the fractional diffusion equation , 2009, J. Comput. Phys..

[15]  Yingjun Jiang,et al.  Moving finite element methods for time fractional partial differential equations , 2013 .

[16]  W. Wyss The fractional diffusion equation , 1986 .

[17]  Yury F. Luchko,et al.  Algorithms for the fractional calculus: A selection of numerical methods , 2005 .

[18]  Francesco Mainardi,et al.  The time fractional diffusion-wave equation , 1995 .

[19]  Mihály Kovács,et al.  Numerical solutions for fractional reaction-diffusion equations , 2008, Comput. Math. Appl..

[20]  Saad Zagloul Rida,et al.  On the solutions of time-fractional reaction–diffusion equations , 2010 .

[21]  Santos B. Yuste,et al.  Weighted average finite difference methods for fractional diffusion equations , 2004, J. Comput. Phys..

[22]  Fenghui Huang A Time-Space Collocation Spectral Approximation for a Class of Time Fractional Differential Equations , 2012 .

[23]  R. Gorenflo,et al.  Fundamental solution of a distributed order time-fractional diffusion-wave equation as probability density , 2013 .

[24]  Arvet Pedas,et al.  Spline collocation methods for linear multi-term fractional differential equations , 2011, J. Comput. Appl. Math..

[25]  B. Henry,et al.  The accuracy and stability of an implicit solution method for the fractional diffusion equation , 2005 .

[26]  YuanTong Gu,et al.  Anomalous sub-diffusion equations by the meshless collocation method , 2012 .

[27]  K. Diethelm The Analysis of Fractional Differential Equations: An Application-Oriented Exposition Using Differential Operators of Caputo Type , 2010 .

[28]  Francesco Mainardi,et al.  The Two Forms of Fractional Relaxation of Distributed Order , 2007 .

[29]  I M Sokolov,et al.  Retarding subdiffusion and accelerating superdiffusion governed by distributed-order fractional diffusion equations. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  Neville J. Ford,et al.  A Numerical Method for the Solution of the Time-Fractional Diffusion Equation , 2014, ICCSA.

[31]  R. Gorenflo,et al.  Time-fractional Diffusion of Distributed Order , 2007, cond-mat/0701132.

[32]  Delfim F. M. Torres,et al.  Numerical approximations of fractional derivatives with applications , 2012, 1208.2588.

[33]  Xuan Zhao,et al.  A box-type scheme for fractional sub-diffusion equation with Neumann boundary conditions , 2011, J. Comput. Phys..

[34]  W. Schneider,et al.  Fractional diffusion and wave equations , 1989 .

[35]  Neville J. Ford,et al.  A numerical method for the distributed order time-fractional diffusion equation , 2014, ICFDA'14 International Conference on Fractional Differentiation and Its Applications 2014.

[36]  Abdul-Majid Wazwaz,et al.  An analytic study of Fisher's equation by using Adomian decomposition method , 2004, Appl. Math. Comput..

[37]  Hal Caswell,et al.  DEMOGRAPHY AND DISPERSAL: CALCULATION AND SENSITIVITY ANALYSIS OF INVASION SPEED FOR STRUCTURED POPULATIONS , 2000 .

[38]  M. Meerschaert,et al.  Numerical methods for solving the multi-term time-fractional wave-diffusion equation , 2012, Fractional calculus & applied analysis.

[39]  R. Nigmatullin The Realization of the Generalized Transfer Equation in a Medium with Fractal Geometry , 1986, January 1.

[40]  A. Quarteroni,et al.  Numerical Approximation of Partial Differential Equations , 2008 .

[41]  Fawang Liu,et al.  Finite difference methods and a fourier analysis for the fractional reaction-subdiffusion equation , 2008, Appl. Math. Comput..