A review on battery thermal management in electric vehicle application

Abstract The global issues of energy crisis and air pollution have offered a great opportunity to develop electric vehicles. However, so far, cycle life of power battery, environment adaptability, driving range and charging time seems far to compare with the level of traditional vehicles with internal combustion engine. Effective battery thermal management (BTM) is absolutely essential to relieve this situation. This paper reviews the existing literature from two levels that are cell level and battery module level. For single battery, specific attention is paid to three important processes which are heat generation, heat transport, and heat dissipation. For large format cell, multi-scale multi-dimensional coupled models have been developed. This will facilitate the investigation on factors, such as local irreversible heat generation, thermal resistance, current distribution, etc., that account for intrinsic temperature gradients existing in cell. For battery module based on air and liquid cooling, series, series-parallel and parallel cooling configurations are discussed. Liquid cooling strategies, especially direct liquid cooling strategies, are reviewed and they may advance the battery thermal management system to a new generation.

[1]  J. Newman,et al.  Porous‐electrode theory with battery applications , 1975 .

[2]  Greg F. Naterer,et al.  Heat transfer in phase change materials for thermal management of electric vehicle battery modules , 2010 .

[3]  M. Doyle,et al.  Modeling of Galvanostatic Charge and Discharge of the Lithium/Polymer/Insertion Cell , 1993 .

[4]  Robert F. Boehm,et al.  Water immersion cooling of PV cells in a high concentration system , 2011 .

[5]  Shi Zhao,et al.  On-board monitoring of 2-D spatially-resolved temperatures in cylindrical lithium-ion batteries: Part II. State estimation via impedance-based temperature sensing , 2016, ArXiv.

[6]  Yonghuang Ye,et al.  Electro-thermal analysis of Lithium Iron Phosphate battery for electric vehicles , 2014 .

[7]  Zhonghao Rao,et al.  Simulation and experiment of thermal energy management with phase change material for ageing LiFePO4 power battery , 2011 .

[8]  Qing Gao,et al.  Investigation on the promotion of temperature uniformity for the designed battery pack with liquid flow in cooling process , 2017 .

[9]  Joeri Van Mierlo,et al.  Thermal Behaviour Investigation of a Large and High Power Lithium Iron Phosphate Cylindrical Cell , 2015 .

[10]  Xiongwen Zhang Thermal analysis of a cylindrical lithium-ion battery , 2011 .

[11]  Chee Wei Tan,et al.  A review of energy sources and energy management system in electric vehicles , 2013 .

[12]  S. Choe,et al.  Theoretical and experimental analysis of heat generations of a pouch type LiMn2O4/carbon high power Li-polymer battery , 2013 .

[13]  Zhonghao Rao,et al.  Experimental investigation on thermal management of electric vehicle battery with heat pipe , 2013 .

[14]  J. Selman,et al.  Cooperative research on safety fundamentals of lithium batteries , 2001 .

[15]  Henk Nijmeijer,et al.  Battery thermal management by boiling heat-transfer , 2014 .

[16]  R. Mahamud,et al.  Reciprocating air flow for Li-ion battery thermal management to improve temperature uniformity , 2011 .

[17]  Henk Jan Bergveld,et al.  A comparison and accuracy analysis of impedance-based temperature estimation methods for Li-ion batteries , 2016 .

[18]  Gerbrand Ceder,et al.  Opportunities and challenges for first-principles materials design and applications to Li battery materials , 2010 .

[19]  J. Selman,et al.  Characterization of commercial Li-ion batteries using electrochemical-calorimetric measurements , 2000 .

[20]  Shriram Santhanagopalan,et al.  Multi-Domain Modeling of Lithium-Ion Batteries Encompassing Multi-Physics in Varied Length Scales , 2011 .

[21]  Lip Huat Saw,et al.  Electro-thermal analysis and integration issues of lithium ion battery for electric vehicles , 2014 .

[22]  Rengasamy Ponnappan,et al.  Contact thermal resistance of Li-ion cell electrode stack , 2004 .

[23]  Chaoyang Wang,et al.  In Situ Measurement of Radial Temperature Distributions in Cylindrical Li-Ion Cells , 2014 .

[24]  Chaoyang Wang,et al.  Li-Ion Cell Operation at Low Temperatures , 2013 .

[25]  Jiateng Zhao,et al.  Investigation of power battery thermal management by using mini-channel cold plate , 2015 .

[26]  J. Schmidt,et al.  Measurement of the internal cell temperature via impedance: Evaluation and application of a new method , 2013 .

[27]  Junjie Gu,et al.  An experimental study of lithium ion battery thermal management using flexible hydrogel films , 2014 .

[28]  Lin Ma,et al.  Thermal management of cylindrical batteries investigated using wind tunnel testing and computational fluid dynamics simulation , 2013 .

[29]  Binggang Cao,et al.  Three-dimensional thermal finite element modeling of lithium-ion battery in thermal abuse application , 2010 .

[30]  Fan He,et al.  Experimental and modeling study of controller-based thermal management of battery modules under dynamic loads , 2016 .

[31]  Lip Huat Saw,et al.  An electro-thermal model and its application on a spiral-wound lithium ion battery with porous current collectors , 2014 .

[32]  Louis Gosselin,et al.  Various ways to take into account density change in solid–liquid phase change models: Formulation and consequences , 2016 .

[33]  J. Selman,et al.  Active (air-cooled) vs. passive (phase change material) thermal management of high power lithium-ion packs: Limitation of temperature rise and uniformity of temperature distribution , 2008 .

[34]  Jaeshin Yi,et al.  Modelling the thermal behaviour of a lithium-ion battery during charge , 2011 .

[35]  Chaoyang Wang,et al.  Heating strategies for Li-ion batteries operated from subzero temperatures , 2013 .

[36]  Marios C. Papaefthymiou,et al.  Figure-of-merit for phase-change materials used in thermal management , 2016 .

[37]  B. Carkhuff,et al.  Instantaneous measurement of the internal temperature in lithium-ion rechargeable cells , 2011 .

[38]  Fangming Jiang,et al.  Thermal analyses of LiFePO4/graphite battery discharge processes , 2013 .

[39]  Ahmad Pesaran,et al.  Thermal Evaluation of Toyota Prius Battery Pack , 2002 .

[40]  Chaoyang Wang,et al.  Lithium-ion battery structure that self-heats at low temperatures , 2016, Nature.

[41]  Xuning Feng,et al.  Online internal short circuit detection for a large format lithium ion battery , 2016 .

[42]  Juan Carlos Ramos,et al.  Thermal Modeling of Large Format Lithium-Ion Cells , 2013 .

[43]  M. Armand,et al.  Building better batteries , 2008, Nature.

[44]  J. Selman,et al.  A novel thermal management system for electric vehicle batteries using phase-change material , 2000 .

[45]  Richard Kotter,et al.  EV Policy Compared: An International Comparison of Governments’ Policy Strategy Towards E-Mobility , 2015 .

[46]  Scott Mathewson,et al.  Experimental Measurements of LiFePO4 Battery Thermal Characteristics , 2014 .

[47]  Zhonghao Rao,et al.  A review of power battery thermal energy management , 2011 .

[48]  Gi-Heon Kim,et al.  A three-dimensional multi-physics model for a Li-ion battery , 2013 .

[49]  U. Kim,et al.  Modeling for the scale-up of a lithium-ion polymer battery , 2009 .

[50]  Said Al-Hallaj,et al.  An alternative cooling system to enhance the safety of Li-ion battery packs , 2009 .

[51]  A. A. O. Tay,et al.  Thermal management of lithium-ion battery pack with liquid cooling , 2015, 2015 31st Thermal Measurement, Modeling & Management Symposium (SEMI-THERM).

[52]  S. C. Chen,et al.  Thermal analysis of lithium-ion batteries , 2005 .

[53]  Chee Burm Shin,et al.  A two-dimensional modeling of a lithium-polymer battery , 2006 .

[54]  Oluwadamilola O. Taiwo,et al.  Non-uniform temperature distribution in Li-ion batteries during discharge – A combined thermal imaging, X-ray micro-tomography and electrochemical impedance approach , 2014 .

[55]  Ilias Belharouak,et al.  Thermal properties of Li4/3Ti5/3O4/LiMn2O4 cell , 2007 .

[56]  Guofeng Chang,et al.  Experiment and simulation of a LiFePO4 battery pack with a passive thermal management system using composite phase change material and graphite sheets , 2015 .

[57]  Kamel Hooman,et al.  On the electrical and thermal contact resistance of metal foam , 2014 .

[58]  M. Keyser,et al.  Tools for Designing Thermal Management of Batteries in Electric Drive Vehicles , 2013 .

[59]  Rui Zhao,et al.  A review of thermal performance improving methods of lithium ion battery: Electrode modification and thermal management system , 2015 .

[60]  Kandler Smith,et al.  Probing the Thermal Implications in Mechanical Degradation of Lithium-Ion Battery Electrodes , 2014 .

[61]  Majid Bahrami,et al.  A Computationally-Effective Thermal Model for Spirally Wound Nickel-Metal Hydride Batteries , 2014 .

[62]  Lip Huat Saw,et al.  Effect of thermal contact resistances on fast charging of large format lithium ion batteries , 2014 .

[63]  N. Omar,et al.  Impact of Tab Location on Large Format Lithium-Ion Pouch Cell Based on Fully Coupled Tree-Dimensional Electrochemical-Thermal Modeling , 2014 .

[64]  Antonio Flores-Tlacuahuac,et al.  Modeling and simulation of lithium-ion batteries , 2011, Comput. Chem. Eng..

[65]  Robert Gross,et al.  The future of lithium availability for electric vehicle batteries , 2014 .

[66]  Lip Huat Saw,et al.  Numerical analyses on optimizing a heat pipe thermal management system for lithium-ion batteries during fast charging , 2015 .

[67]  Ralph E. White,et al.  Modeling Heat Conduction in Spiral Geometries , 2003 .

[68]  Jianqiu Li,et al.  Analysis of the heat generation of lithium-ion battery during charging and discharging considering different influencing factors , 2014, Journal of Thermal Analysis and Calorimetry.

[69]  Radu Gogoana,et al.  Internal resistance variances in lithium-ion batteries and implications in manufacturing , 2012 .

[70]  Dong Hyup Jeon,et al.  Numerical modeling of lithium ion battery for predicting thermal behavior in a cylindrical cell , 2014 .

[71]  Paul R. Shearing,et al.  Exploring 3D microstructural evolution in Li-Sulfur battery electrodes using in-situ X-ray tomography , 2016, Scientific Reports.

[72]  Jinhua Sun,et al.  Thermal behaviour analysis of lithium-ion battery at elevated temperature using deconvolution method , 2014 .

[73]  Yun Cheng,et al.  Numerical Analysis of Distribution and Evolution of Reaction Current Density in Discharge Process of Lithium-Ion Power Battery , 2014 .

[74]  Jiateng Zhao,et al.  Thermal management of cylindrical power battery module for extending the life of new energy electric vehicles , 2015 .

[75]  Ahmad Pesaran,et al.  Battery thermal models for hybrid vehicle simulations , 2002 .

[76]  Susan L. Rose-Pehrsson,et al.  Expanding the Operational Limits of the Single-Point Impedance Diagnostic for Internal Temperature Monitoring of Lithium-ion Batteries , 2015 .

[77]  Minggao Ouyang,et al.  Thermal runaway features of large format prismatic lithium ion battery using extended volume accelerating rate calorimetry , 2014 .

[78]  Yonghuang Ye,et al.  Electro-thermal cycle life model for lithium iron phosphate battery , 2012 .

[79]  Chunxin Yang,et al.  Experimental study of the heat generations of Li/SOCl2 and Li/SO2 batteries using a phase-change measurement method , 2014, Journal of Thermal Analysis and Calorimetry.

[80]  Cong Zhu,et al.  Development of a theoretically based thermal model for lithium ion battery pack , 2013 .

[81]  Stefano Longo,et al.  A review on electric vehicle battery modelling: From Lithium-ion toward Lithium–Sulphur , 2016 .

[82]  Tao Wang,et al.  Development of efficient air-cooling strategies for lithium-ion battery module based on empirical heat source model , 2015 .

[83]  Yuan Yang,et al.  Thermally conductive separator with hierarchical nano/microstructures for improving thermal management of batteries , 2016 .

[84]  Jason B. Siegel,et al.  A lumped-parameter electro-thermal model for cylindrical batteries , 2014 .

[85]  Ui Seong Kim,et al.  Three-Dimensional Thermal Modeling of a Lithium-Ion Battery Considering the Combined Effects of the Electrical and Thermal Contact Resistances between Current Collecting Tab and Lead Wire , 2013 .

[86]  Ralph E. White,et al.  Mathematical modeling of a lithium ion battery with thermal effects in COMSOL Inc. Multiphysics (MP) , 2011 .

[87]  Bin Guo,et al.  Numerical Analysis and Design of Thermal Management System for Lithium Ion Battery Pack Using Thermoelectric Coolers , 2014 .

[88]  Seung-Don Choi,et al.  The Current Move of Lithium Ion Batteries Towards the Next Phase , 2012 .

[89]  Xiongwen Zhang,et al.  Assessment of the forced air-cooling performance for cylindrical lithium-ion battery packs: A comparative analysis between aligned and staggered cell arrangements , 2015 .

[90]  Richard D. Braatz,et al.  Modeling and Simulation of Lithium-Ion Batteries from a Systems Engineering Perspective , 2010 .

[91]  J. Newman,et al.  Thermal Modeling of Porous Insertion Electrodes , 2003 .

[92]  Kim Yeow,et al.  Design of Direct and Indirect Liquid Cooling Systems for High- Capacity, High-Power Lithium-Ion Battery Packs , 2012 .

[93]  Ibrahim Dincer,et al.  Experimental temperature distributions in a prismatic lithium-ion battery at varying conditions , 2016 .

[94]  Ralph E. White,et al.  Thermal Model for a Li-Ion Cell , 2008 .

[95]  Satoshi Matsuoka,et al.  TSUBAME-KFC: A modern liquid submersion cooling prototype towards exascale becoming the greenest supercomputer in the world , 2014, 2014 20th IEEE International Conference on Parallel and Distributed Systems (ICPADS).

[96]  Tao Wang,et al.  Thermal investigation of lithium-ion battery module with different cell arrangement structures and forced air-cooling strategies , 2014 .

[97]  Hongguang Sun,et al.  Development of cooling strategy for an air cooled lithium-ion battery pack , 2014 .

[98]  Wen Tong Chong,et al.  Computational fluid dynamic and thermal analysis of Lithium-ion battery pack with air cooling , 2016 .

[99]  A. Greco,et al.  A theoretical and computational study of lithium-ion battery thermal management for electric vehicles using heat pipes , 2014 .

[100]  Andrew C. Brenz,et al.  Voltec Battery Design and Manufacturing , 2011 .

[101]  Jan N. Reimers,et al.  Predicting current flow in spiral wound cell geometries , 2006 .

[102]  N. Brandon,et al.  The effect of thermal gradients on the performance of lithium-ion batteries , 2014 .

[103]  G. Blomgren The development and future of lithium ion batteries , 2017 .

[104]  T. Araki,et al.  Thermal behavior of small lithium-ion battery during rapid charge and discharge cycles , 2006 .

[105]  Haifeng Dai,et al.  A new lithium-ion battery internal temperature on-line estimate method based on electrochemical impedance spectroscopy measurement , 2015 .

[106]  Jai Prakash,et al.  In Situ Measurements of Heat Generation in a Li/Mesocarbon Microbead Half-Cell , 2003 .

[107]  Jiateng Zhao,et al.  Thermal conductivity of energy conversion and storage composite materials packing with short fiber fillers and artificial size cylinder fillers , 2016 .

[108]  Zhiguo Qu,et al.  Numerical model of the passive thermal management system for high-power lithium ion battery by using porous metal foam saturated with phase change material , 2014 .

[109]  Jiuchun Jiang,et al.  Comparison of different cooling methods for lithium ion battery cells , 2016 .

[110]  Xianguo Li,et al.  Thermal management of lithium‐ion batteries for electric vehicles , 2013 .

[111]  Juan Carlos Ramos,et al.  Novel thermal management system design methodology for power lithium-ion battery , 2014 .

[112]  T. Fuller,et al.  A Critical Review of Thermal Issues in Lithium-Ion Batteries , 2011 .

[113]  Meng Guo,et al.  Mathematical Model for a Spirally-Wound Lithium-Ion Cell , 2014 .

[114]  Minggao Ouyang,et al.  Characterization of large format lithium ion battery exposed to extremely high temperature , 2014 .

[115]  Ahmad Pesaran,et al.  Thermal/electrical modeling for abuse‐tolerant design of lithium ion modules , 2010 .

[116]  Siaw Kiang Chou,et al.  Ultra-thin minichannel LCP for EV battery thermal management , 2014 .

[117]  Fan He,et al.  Experimental demonstration of active thermal control of a battery module consisting of multiple Li-ion cells , 2015 .

[118]  Guy Marlair,et al.  Safety focused modeling of lithium-ion batteries: A review , 2016 .

[119]  Naoki Baba,et al.  Numerical simulation of thermal behavior of lithium-ion secondary batteries using the enhanced single particle model , 2014 .

[120]  M. Wohlfahrt‐Mehrens,et al.  Ageing mechanisms in lithium-ion batteries , 2005 .

[121]  Yang-Kook Sun,et al.  Isothermal calorimetry investigation of Li1+xMn2−yAlzO4 spinel☆ , 2007 .

[122]  Arun S. Mujumdar,et al.  Thermal–electrochemical model for passive thermal management of a spiral-wound lithium-ion battery , 2012 .

[123]  Jeremy J. Michalek,et al.  Evaluation of the Effects of Thermal Management on Battery Life in Plug-in Hybrid Electric Vehicles , 2012 .

[124]  Fangming Jiang,et al.  Thermal safety of lithium-ion batteries with various cathode materials: A numerical study , 2016 .

[125]  Yves Dube,et al.  A comprehensive review of lithium-ion batteries used in hybrid and electric vehicles at cold temperatures , 2016 .

[126]  Wei Zhao,et al.  Effect of tab design on large-format Li-ion cell performance , 2014 .

[127]  Gholamreza Karimi,et al.  Thermal management analysis of a Li-ion battery cell using phase change material loaded with carbon fibers , 2016 .

[128]  A. Pesaran,et al.  A parametric study on thermal management of an air-cooled lithium-ion battery module for plug-in hybrid electric vehicles , 2013 .

[129]  Thomas J. Richardson,et al.  Visualization of Charge Distribution in a Lithium Battery Electrode , 2010 .

[130]  Chaoyang Wang,et al.  Analysis of Electrochemical and Thermal Behavior of Li-Ion Cells , 2003 .

[131]  Zhonghao Rao,et al.  Investigation of the thermal performance of phase change material/mini-channel coupled battery thermal management system , 2016 .

[132]  Yuying Yan,et al.  A critical review of thermal management models and solutions of lithium-ion batteries for the development of pure electric vehicles , 2016 .

[133]  Zhonghao Rao,et al.  Experimental investigation of battery thermal management system for electric vehicle based on paraffin/copper foam , 2015 .

[134]  Dinh Vinh Do,et al.  Thermal modeling of a cylindrical LiFePO4/graphite lithium-ion battery , 2010 .

[135]  D. Howey,et al.  Battery internal temperature estimation by combined impedance and surface temperature measurement , 2014 .

[136]  Paul W. C. Northrop,et al.  Efficient Simulation and Reformulation of Lithium-Ion Battery Models for Enabling Electric Transportation , 2014 .

[137]  K. Smith,et al.  Three dimensional thermal-, electrical-, and electrochemical-coupled model for cylindrical wound large format lithium-ion batteries , 2013 .

[138]  Paul A. Nelson,et al.  Modeling thermal management of lithium-ion PNGV batteries , 2002 .

[139]  Sandeep Yayathi,et al.  Thermo-electrochemical evaluation of lithium-ion batteries for space applications , 2015 .

[140]  Rui Liu,et al.  Numerical and analytical modeling of lithium ion battery thermal behaviors with different cooling designs , 2013 .

[141]  Mao-Sung Wu,et al.  Heat dissipation design for lithium-ion batteries , 2002 .

[142]  Junjie Gu,et al.  Investigation on a hydrogel based passive thermal management system for lithium ion batteries , 2014 .

[143]  John Newman,et al.  A General Energy Balance for Battery Systems , 1984 .

[144]  J. Selman,et al.  Thermal modeling and design considerations of lithium-ion batteries , 1999 .

[145]  Ibrahim Dincer,et al.  Experimental and theoretical investigations of heat generation rates for a water cooled LiFePO4 battery , 2016 .

[146]  Jiateng Zhao,et al.  Thermal performance of mini-channel liquid cooled cylinder based battery thermal management for cylindrical lithium-ion power battery , 2015 .

[147]  C. Tantolin,et al.  Experimental study of immersion cooling for power components , 1994 .

[148]  Liang Zheng,et al.  Investigation of the Temperature Distribution in the Lithium-Ion Battery for Pure Electric Vehicles , 2012 .

[149]  Ibrahim Dincer,et al.  Experimental and theoretical investigation of temperature distributions in a prismatic lithium-ion battery , 2016 .

[150]  Jan N. Reimers,et al.  Analytic theory for foil impedance in spiral wound cell geometries , 2014 .

[151]  Gi-Heon Kim,et al.  Integration Issues of Cells into Battery Packs for Plug-in and Hybrid Electric Vehicles: Preprint , 2009 .

[152]  C. Madhusudana Thermal Contact Conductance , 1996 .

[153]  Li Jia,et al.  Experimental investigation on lithium-ion battery thermal management based on flow boiling in mini-channel , 2017 .

[154]  Bin Wu,et al.  Examining temporal and spatial variations of internal temperature in large-format laminated battery with embedded thermocouples , 2013 .

[155]  Wenquan Lu,et al.  Determination of the reversible and irreversible heats of LiNi0.8Co0.2O2/mesocarbon microbead Li-ion cell reactions using isothermal microcalorimetery , 2006 .

[156]  Ahmad Pesaran,et al.  Thermal Management of Batteries in Advanced Vehicles Using Phase-Change Materials (Presentation) , 2007 .

[157]  U. Kim,et al.  Effect of electrode configuration on the thermal behavior of a lithium-polymer battery , 2008 .

[158]  Bin Wu,et al.  Thermal Design for the Pouch-Type Large-Format Lithium-Ion Batteries I. Thermo-Electrical Modeling and Origins of Temperature Non-Uniformity , 2015 .

[159]  Ralph B. Dinwiddie,et al.  Thermal properties of lithium-ion battery and components , 1999 .

[160]  J. Selman,et al.  Thermal management of Li-ion battery with phase change material for electric scooters: experimental validation , 2005 .

[161]  N. Omar,et al.  Development of an Advanced Two-Dimensional Thermal Model for Large size Lithium-ion Pouch Cells , 2014 .

[162]  Ralph E. White,et al.  An Efficient Electrochemical–Thermal Model for a Lithium-Ion Cell by Using the Proper Orthogonal Decomposition Method , 2010 .

[163]  A. Hande Internal battery temperature estimation using series battery resistance measurements during cold temperatures , 2006 .

[164]  M. Verbrugge,et al.  Temperature and Current Distribution in Thin‐Film Batteries , 1999 .

[165]  G. Karimi,et al.  Thermal Management Analysis of a Lithium-Ion Battery Pack using Flow Network Approach , 2012 .

[166]  Heesung Park,et al.  A design of air flow configuration for cooling lithium ion battery in hybrid electric vehicles , 2013 .

[167]  J. Crepeau,et al.  Phase Change Heat Transfer Enhancement Using Copper Porous Foam , 2008 .

[168]  Sheikh Ahmad Zaki,et al.  A review on phase change material (PCM) for sustainable passive cooling in building envelopes , 2016 .

[169]  Nigel P. Brandon,et al.  Coupled thermal–electrochemical modelling of uneven heat generation in lithium-ion battery packs , 2013 .

[170]  Bernard Bäker,et al.  Current density and state of charge inhomogeneities in Li-ion battery cells with LiFePO4 as cathode material due to temperature gradients , 2011 .

[171]  Chunxin Yang,et al.  Experimental Study on Specific Heat Capacity of Lithium Thionyl Chloride Batteries by a Precise Measurement Method , 2013 .

[172]  Anthony Jarrett,et al.  Design optimization of electric vehicle battery cooling plates for thermal performance , 2011 .

[173]  Phl Peter Notten,et al.  Sensorless battery temperature measurements based on electrochemical impedance spectroscopy , 2014 .

[174]  Takamitsu Tajima,et al.  Boiling Liquid Battery Cooling for Electric Vehicle , 2014, 2014 IEEE Conference and Expo Transportation Electrification Asia-Pacific (ITEC Asia-Pacific).

[175]  D. Jeon,et al.  Thermal modeling of cylindrical lithium ion battery during discharge cycle , 2011 .