Whole-brain estimates of directed connectivity for human connectomics

Connectomics is essential for understanding large-scale brain networks but requires that individual connection estimates are neurobiologically interpretable. In particular, a principle of brain organization is that reciprocal connections between cortical areas are functionally asymmetric. This is a challenge for fMRI-based connectomics in humans where only undirected functional connectivity estimates are routinely available. By contrast, whole-brain estimates of effective (directed) connectivity are computationally challenging, and emerging methods require empirical validation. Here, using a motor task at 7T, we demonstrate that a novel generative model can infer known connectivity features in a whole-brain network (>200 regions, >40,000 connections) highly efficiently. Furthermore, graph-theoretical analyses of directed connectivity estimates identify functional roles of motor areas more accurately than undirected functional connectivity estimates. These results, which can be achieved in an entirely unsupervised manner, demonstrate the feasibility of inferring directed connections in whole-brain networks and open new avenues for human connectomics.

[1]  G. Rizzolatti,et al.  The Cortical Motor System , 2001, Neuron.

[2]  S. Shipp,et al.  The functional logic of cortical connections , 1988, Nature.

[3]  B. Day,et al.  Interhemispheric inhibition of the human motor cortex. , 1992, The Journal of physiology.

[4]  Karl J. Friston,et al.  Large-scale DCMs for resting-state fMRI , 2017, Network Neuroscience.

[5]  Karl J. Friston,et al.  Effective connectivity: Influence, causality and biophysical modeling , 2011, NeuroImage.

[6]  R. Gonzalez,et al.  Diffusion-weighted MR imaging of the brain. , 2000, Radiology.

[7]  Michael Erb,et al.  Linking structural and effective brain connectivity: structurally informed Parametric Empirical Bayes (si-PEB) , 2018, Brain Structure and Function.

[8]  Michael W. Cole,et al.  Mapping the human brain's cortical-subcortical functional network organization , 2018, NeuroImage.

[9]  Timothy Edward John Behrens,et al.  Task-free MRI predicts individual differences in brain activity during task performance , 2016, Science.

[10]  Karl J. Friston Modalities, Modes, and Models in Functional Neuroimaging , 2009, Science.

[11]  Maurizio Corbetta,et al.  Sparse DCM for whole-brain effective connectivity from resting-state fMRI data , 2019, NeuroImage.

[12]  Olaf Sporns,et al.  Complex network measures of brain connectivity: Uses and interpretations , 2010, NeuroImage.

[13]  Edward V. Evarts,et al.  Role of Motor Cortex in Voluntary Movements in Primates , 2011 .

[14]  David Maxwell Chickering,et al.  Optimal Structure Identification With Greedy Search , 2002, J. Mach. Learn. Res..

[15]  Simon B Eickhoff,et al.  Imaging-based parcellations of the human brain , 2018, Nature Reviews Neuroscience.

[16]  C. Stam Modern network science of neurological disorders , 2014, Nature Reviews Neuroscience.

[17]  Karl J. Friston,et al.  Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions , 2017 .

[18]  M. Gazzaniga Cerebral specialization and interhemispheric communication: does the corpus callosum enable the human condition? , 2000, Brain : a journal of neurology.

[19]  Steen Moeller,et al.  Evaluation of slice accelerations using multiband echo planar imaging at 3T , 2013, NeuroImage.

[20]  Eduardo A. Aponte,et al.  Generative models for clinical applications in computational psychiatry. , 2018, Wiley interdisciplinary reviews. Cognitive science.

[21]  R. Passingham,et al.  The role of premotor and parietal cortex in the direction of action , 1982, Brain Research.

[22]  Joseph Ramsey,et al.  Bayesian networks for fMRI: A primer , 2014, NeuroImage.

[23]  Karl J. Friston,et al.  The dysconnection hypothesis (2016) , 2016, Schizophrenia Research.

[24]  Alexander Kraskov,et al.  Ventral Premotor–Motor Cortex Interactions in the Macaque Monkey during Grasp: Response of Single Neurons to Intracortical Microstimulation , 2011, The Journal of Neuroscience.

[25]  S. Swinnen,et al.  The role of anterior cingulate cortex and precuneus in the coordination of motor behaviour , 2005, The European journal of neuroscience.

[26]  S. Brenner,et al.  The structure of the nervous system of the nematode Caenorhabditis elegans. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[27]  R Kötter,et al.  Useless or Helpful? The "Limbic System" Concept , 1997, Reviews in the neurosciences.

[28]  Karl J. Friston,et al.  Bayesian model selection for group studies , 2009, NeuroImage.

[29]  Viktor K. Jirsa,et al.  The Virtual Epileptic Patient: Individualized whole-brain models of epilepsy spread , 2017, NeuroImage.

[30]  M. Corbetta,et al.  How Local Excitation–Inhibition Ratio Impacts the Whole Brain Dynamics , 2014, The Journal of Neuroscience.

[31]  Natalia Z Bielczyk,et al.  Disentangling causal webs in the brain using functional magnetic resonance imaging: A review of current approaches , 2017, Network Neuroscience.

[32]  P. Goldman-Rakic,et al.  Preface: Cerebral Cortex Has Come of Age , 1991 .

[33]  Tobias U. Hauser,et al.  The PhysIO Toolbox for Modeling Physiological Noise in fMRI Data , 2017, Journal of Neuroscience Methods.

[34]  A. P. Georgopoulos,et al.  Functional magnetic resonance imaging of motor cortex: hemispheric asymmetry and handedness. , 1993, Science.

[35]  Karl J. Friston,et al.  Tractography-based priors for dynamic causal models , 2009, NeuroImage.

[36]  J. Binder,et al.  Functional magnetic resonance imaging of complex human movements , 1993, Neurology.

[37]  Ravi S. Menon,et al.  Identification of Optimal Structural Connectivity Using Functional Connectivity and Neural Modeling , 2014, The Journal of Neuroscience.

[38]  Karl J. Friston,et al.  Nonlinear Responses in fMRI: The Balloon Model, Volterra Kernels, and Other Hemodynamics , 2000, NeuroImage.

[39]  W. Edelstein,et al.  The intrinsic signal‐to‐noise ratio in NMR imaging , 1986, Magnetic resonance in medicine.

[40]  K. Stephan,et al.  Translational Perspectives for Computational Neuroimaging , 2015, Neuron.

[41]  Yong He,et al.  BrainNet Viewer: A Network Visualization Tool for Human Brain Connectomics , 2013, PloS one.

[42]  Michael J. Cole,et al.  Estimation and validation of individualized dynamic brain models with resting state fMRI , 2019, NeuroImage.

[43]  Klaas E. Stephan,et al.  Mechanisms of hemispheric lateralization: Asymmetric interhemispheric recruitment in the face perception network , 2016, NeuroImage.

[44]  Karl J. Friston,et al.  Structural and Functional Brain Networks: From Connections to Cognition , 2013, Science.

[45]  Karl J. Friston Functional and Effective Connectivity: A Review , 2011, Brain Connect..

[46]  Fikret Isik Karahanoglu,et al.  Dynamics of large-scale fMRI networks: Deconstruct brain activity to build better models of brain function , 2017 .

[47]  M. Breakspear,et al.  The connectomics of brain disorders , 2015, Nature Reviews Neuroscience.

[48]  Justin T. Baker,et al.  Functional connectomics of affective and psychotic pathology , 2018, Proceedings of the National Academy of Sciences.

[49]  Thomas E. Nichols,et al.  A positive-negative mode of population covariation links brain connectivity, demographics and behavior , 2015, Nature Neuroscience.

[50]  Klaas E. Stephan,et al.  Network participation indices: characterizing component roles for information processing in neural networks , 2003, Neural Networks.

[51]  Rainer Goebel,et al.  Mapping directed influence over the brain using Granger causality and fMRI , 2005, NeuroImage.

[52]  T. Naidich,et al.  Ultra-High-Field MR Neuroimaging , 2015, American Journal of Neuroradiology.

[53]  Karl J. Friston,et al.  Synaptic Plasticity and Dysconnection in Schizophrenia , 2006, Biological Psychiatry.

[54]  Jessika Weiss,et al.  Graphical Models In Applied Multivariate Statistics , 2016 .

[55]  Yu Zhang,et al.  The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture , 2016, Cerebral cortex.

[56]  V. Menon Large-scale brain networks and psychopathology: a unifying triple network model , 2011, Trends in Cognitive Sciences.

[57]  Karl J. Friston,et al.  Dysconnection in Schizophrenia: From Abnormal Synaptic Plasticity to Failures of Self-monitoring , 2009, Schizophrenia bulletin.

[58]  Michael Breakspear,et al.  Graph analysis of the human connectome: Promise, progress, and pitfalls , 2013, NeuroImage.

[59]  Kawin Setsompop,et al.  Ultra-fast MRI of the human brain with simultaneous multi-slice imaging. , 2013, Journal of magnetic resonance.

[60]  Nan Xu,et al.  Initial Validation for the Estimation of Resting-State fMRI Effective Connectivity by a Generalization of the Correlation Approach , 2016, Front. Neurosci..

[61]  O. Sporns,et al.  Complex brain networks: graph theoretical analysis of structural and functional systems , 2009, Nature Reviews Neuroscience.

[62]  R. Tibshirani,et al.  Sparse inverse covariance estimation with the graphical lasso. , 2008, Biostatistics.

[63]  Kun Zhang,et al.  Causal Discovery of Feedback Networks with Functional Magnetic Resonance Imaging , 2018, bioRxiv.

[64]  R. Deriche,et al.  From Diffusion MRI to Brain Connectomics , 2013 .

[65]  O. Sporns,et al.  Towards the virtual brain: network modeling of the intact and the damaged brain. , 2010, Archives italiennes de biologie.

[66]  Karl J. Friston,et al.  Variational free energy and the Laplace approximation , 2007, NeuroImage.

[67]  Clark Glymour,et al.  Estimating feedforward and feedback effective connections from fMRI time series: Assessments of statistical methods , 2019, Network Neuroscience.

[68]  Klaas E. Stephan,et al.  The anatomical basis of functional localization in the cortex , 2002, Nature Reviews Neuroscience.

[69]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[70]  Mark W. Woolrich,et al.  Network modelling methods for FMRI , 2011, NeuroImage.

[71]  Kathleen M. Gates,et al.  Organizing Heterogeneous Samples Using Community Detection of GIMME-Derived Resting State Functional Networks , 2014, PloS one.

[72]  P. Hagmann From diffusion MRI to brain connectomics , 2005 .

[73]  Justin T. Baker,et al.  Functional connectomics of affective and psychotic pathology , 2019, Proceedings of the National Academy of Sciences.

[74]  G. Deco,et al.  Inversion of a large-scale circuit model reveals a cortical hierarchy in the dynamic resting human brain , 2019, Science Advances.

[75]  D. Pandya,et al.  Supplementary motor area structure and function: Review and hypotheses , 1985 .

[76]  Keith Heberlein,et al.  Imaging human connectomes at the macroscale , 2013, Nature Methods.

[77]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[78]  A. Meyer-Lindenberg,et al.  Psychopathology and the Human Connectome: Toward a Transdiagnostic Model of Risk For Mental Illness , 2012, Neuron.

[79]  R. Turner,et al.  Event-Related fMRI: Characterizing Differential Responses , 1998, NeuroImage.

[80]  Matthieu Gilson,et al.  Effective connectivity inferred from fMRI transition dynamics during movie viewing points to a balanced reconfiguration of cortical interactions , 2017, NeuroImage.

[81]  W. Stacey,et al.  On the nature of seizure dynamics. , 2014, Brain : a journal of neurology.

[82]  K. Zilles,et al.  Line bisection judgments implicate right parietal cortex and cerebellum as assessed by fMRI , 2000, Neurology.

[83]  J. Levy,et al.  Possible Basis for the Evolution of Lateral Specialization of the Human Brain , 1969, Nature.

[84]  N. Logothetis What we can do and what we cannot do with fMRI , 2008, Nature.

[85]  G. Goldberg Supplementary motor area structure and function: Review and hypotheses , 1985, Behavioral and Brain Sciences.

[86]  Russell A. Poldrack,et al.  Six problems for causal inference from fMRI , 2010, NeuroImage.

[87]  K. Zilles,et al.  Functions and structures of the motor cortices in humans , 1996, Current Opinion in Neurobiology.

[88]  Anil K. Seth,et al.  A MATLAB toolbox for Granger causal connectivity analysis , 2010, Journal of Neuroscience Methods.

[89]  Nasser M. Nasrabadi,et al.  Pattern Recognition and Machine Learning , 2006, Technometrics.

[90]  O. Sporns,et al.  Network neuroscience , 2017, Nature Neuroscience.

[91]  Suzanne T. Witt,et al.  Functional neuroimaging correlates of finger-tapping task variations: An ALE meta-analysis , 2008, NeuroImage.

[92]  D. V. Essen,et al.  Hierarchical Heterogeneity across Human Cortex Shapes Large-Scale Neural Dynamics , 2018, Neuron.

[93]  M. Mesulam A cortical network for directed attention and unilateral neglect , 1981, Annals of neurology.

[94]  P. Lauterbur,et al.  The sensitivity of the zeugmatographic experiment involving human samples , 1979 .

[95]  Karl J. Friston,et al.  Dynamic causal modelling , 2003, NeuroImage.

[96]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[97]  A. Cavanna,et al.  The precuneus: a review of its functional anatomy and behavioural correlates. , 2006, Brain : a journal of neurology.

[98]  S. Bressler,et al.  Large-scale visuomotor integration in the cerebral cortex. , 2007, Cerebral cortex.

[99]  R. Goebel,et al.  7T vs. 4T: RF power, homogeneity, and signal‐to‐noise comparison in head images , 2001, Magnetic resonance in medicine.

[100]  Essa Yacoub,et al.  The WU-Minn Human Connectome Project: An overview , 2013, NeuroImage.

[101]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[102]  M. Kringelbach,et al.  Great Expectations: Using Whole-Brain Computational Connectomics for Understanding Neuropsychiatric Disorders , 2014, Neuron.

[103]  Joachim M. Buhmann,et al.  Regression DCM for fMRI , 2017, NeuroImage.

[104]  Thomas Witzel,et al.  Ultrafast inverse imaging techniques for fMRI , 2012, NeuroImage.

[105]  Karl J. Friston The disconnection hypothesis , 1998, Schizophrenia Research.

[106]  Gustavo Deco,et al.  Resting brains never rest: computational insights into potential cognitive architectures , 2013, Trends in Neurosciences.

[107]  Rainer Goebel,et al.  Investigating directed cortical interactions in time-resolved fMRI data using vector autoregressive modeling and Granger causality mapping. , 2003, Magnetic resonance imaging.

[108]  W. Penfield,et al.  SOMATIC MOTOR AND SENSORY REPRESENTATION IN THE CEREBRAL CORTEX OF MAN AS STUDIED BY ELECTRICAL STIMULATION , 1937 .

[109]  Olaf Sporns,et al.  The Human Connectome: A Structural Description of the Human Brain , 2005, PLoS Comput. Biol..

[110]  Anil K. Seth,et al.  Granger causality analysis of fMRI BOLD signals is invariant to hemodynamic convolution but not downsampling , 2013, NeuroImage.

[111]  P. Roland,et al.  Functional anatomy of reaching and visuomotor learning: a positron emission tomography study. , 1995, Cerebral cortex.

[112]  Clark Glymour,et al.  A million variables and more: the Fast Greedy Equivalence Search algorithm for learning high-dimensional graphical causal models, with an application to functional magnetic resonance images , 2016, International Journal of Data Science and Analytics.

[113]  M. Farah,et al.  Progress and challenges in probing the human brain , 2015, Nature.

[114]  Lazar Fleysher,et al.  Macro-connectomics and microstructure predict dynamic plasticity patterns in the non-human primate brain , 2018, eLife.

[115]  Karl J. Friston,et al.  Interhemispheric Integration of Visual Processing during Task-Driven Lateralization , 2007, The Journal of Neuroscience.

[116]  Joachim M. Buhmann,et al.  A generative model of whole-brain effective connectivity , 2018, NeuroImage.

[117]  Louis K. Scheffer,et al.  A visual motion detection circuit suggested by Drosophila connectomics , 2013, Nature.

[118]  Simon B. Eickhoff,et al.  Dynamic intra- and interhemispheric interactions during unilateral and bilateral hand movements assessed with fMRI and DCM , 2008, NeuroImage.

[119]  U. Brandes A faster algorithm for betweenness centrality , 2001 .