Popular Kohn-Sham density functionals strongly overestimate many-body interactions in van der Waals systems

We find spuriously large repulsive many-body contributions to binding energies of rare gas systems for the first three rungs of "Jacob's Ladder" within Kohn-Sham density functional theory. While the description of van der Waals dimers is consistently improved by the pairwise London C-6/R-6 correction, inclusion of a corresponding three-body Axilrod-Teller C-9/R-9 term only increases the repulsive error. Our conclusions based on extensive solid state and molecular electronic structure calculations are particularly relevant for condensed phase van der Waals systems.

[1]  Donald G Truhlar,et al.  Design of density functionals that are broadly accurate for thermochemistry, thermochemical kinetics, and nonbonded interactions. , 2005, The journal of physical chemistry. A.

[2]  R. Dreizler,et al.  van der Waals bonds in density-functional theory , 2000 .

[3]  Jianmin Tao,et al.  Tests of a ladder of density functionals for bulk solids and surfaces , 2004 .

[4]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[5]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[6]  K. Burke,et al.  Rationale for mixing exact exchange with density functional approximations , 1996 .

[7]  Qin Wu,et al.  Empirical correction to density functional theory for van der Waals interactions , 2002 .

[8]  H. H. Chen,et al.  Thermodynamic consistency of vapor pressure and calorimetric data for argon, krypton, and xenon , 1977 .

[9]  Stefan Grimme,et al.  Accurate description of van der Waals complexes by density functional theory including empirical corrections , 2004, J. Comput. Chem..

[10]  F. London,et al.  Über das Verhältnis der van der Waalsschen Kräfte zu den homöopolaren Bindungskräften , 1930 .

[11]  Marc-Antoine Perrin,et al.  Energy ranking of molecular crystals using density functional theory calculations and an empirical van der waals correction. , 2005, The journal of physical chemistry. B.

[12]  Pavel Hobza,et al.  State-of-the-art correlated ab initio potential energy curves for heavy rare gas dimers: Ar2, Kr2, and Xe2 , 2003 .

[13]  B. Alder,et al.  THE GROUND STATE OF THE ELECTRON GAS BY A STOCHASTIC METHOD , 2010 .

[14]  F. Leusen,et al.  A major advance in crystal structure prediction. , 2008, Angewandte Chemie.

[15]  G. Kresse,et al.  Ab initio molecular dynamics for liquid metals. , 1993 .

[16]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[17]  Richard Alan Lesar Electron-gas plus damped-dispersion model for intermolecular forces. The rare-gas and hydrogen-helium, hydrogen-neon, and hydrogen-argon potentials , 1984 .

[18]  O. A. von Lilienfeld,et al.  Library of dispersion-corrected atom-centered potentials for generalized gradient approximation functionals: Elements H, C, N, O, He, Ne, Ar, and Kr , 2007 .

[19]  Sándor Suhai,et al.  Self-consistent-charge density-functional tight-binding method for simulations of complex materials properties , 1998 .

[20]  Ivano Tavernelli,et al.  Optimization of effective atom centered potentials for london dispersion forces in density functional theory. , 2004, Physical review letters.

[21]  Teter,et al.  Separable dual-space Gaussian pseudopotentials. , 1996, Physical review. B, Condensed matter.

[22]  Friedhelm Bechstedt,et al.  Semiempirical van der Waals correction to the density functional description of solids and molecular structures , 2006 .

[23]  R. Simmons,et al.  Measurements of X-Ray Lattice Constant, Thermal Expansivity, and Isothermal Compressibility of Argon Crystals , 1966 .

[24]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[25]  Beate Paulus,et al.  Ab initio coupled-cluster calculations for the fcc and hcp structures of rare-gas solids , 2000 .

[26]  A. Donchev,et al.  Many-body effects of dispersion interaction. , 2006, The Journal of chemical physics.

[27]  P. Herman,et al.  Vacuum ultraviolet laser spectroscopy. V. Rovibronic spectra of Ar2 and constants of the ground and excited states , 1988 .

[28]  Stefan Grimme,et al.  Noncovalent Interactions between Graphene Sheets and in Multishell (Hyper)Fullerenes , 2007 .

[29]  Daniel Sánchez-Portal,et al.  Density‐functional method for very large systems with LCAO basis sets , 1997 .

[30]  O. A. von Lilienfeld,et al.  Performance of optimized atom-centered potentials for weakly bonded systems using density functional theory , 2005 .

[31]  Exact-exchange density-functional calculations for noble-gas solids , 2003, cond-mat/0307751.

[32]  Vogl,et al.  Self-interaction corrections in semiconductors. , 1995, Physical review. B, Condensed matter.

[33]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[34]  Thomas Frauenheim,et al.  Hydrogen bonding and stacking interactions of nucleic acid base pairs: A density-functional-theory based treatment , 2001 .

[35]  A. Gavezzotti,et al.  Molecular recognition in organic crystals: directed intermolecular bonds or nonlocalized bonding? , 2005, Angewandte Chemie.

[36]  F. Bechstedt,et al.  Attracted by long-range electron correlation: adenine on graphite. , 2005, Physical review letters.

[37]  Yingkai Zhang,et al.  Comment on “Generalized Gradient Approximation Made Simple” , 1998 .

[38]  P. Hohenberg,et al.  Inhomogeneous Electron Gas , 1964 .

[39]  D. Langreth,et al.  Van Der Waals Interactions In Density Functional Theory , 2007 .

[40]  Jirí Cerný,et al.  Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations , 2007, J. Comput. Chem..

[41]  M. Dion,et al.  van der Waals density functional for general geometries. , 2004, Physical review letters.

[42]  G. Scuseria,et al.  Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. , 2003, Physical review letters.

[43]  L. Kronik,et al.  Orbital-dependent density functionals: Theory and applications , 2008 .

[44]  John W. Hepburn,et al.  A simple but reliable method for the prediction of intermolecular potentials , 1975 .

[45]  Masayuki Hasegawa,et al.  Semiempirical approach to the energetics of interlayer binding in graphite , 2004 .

[46]  A. Zunger,et al.  Self-interaction correction to density-functional approximations for many-electron systems , 1981 .

[47]  R. Podeszwa,et al.  Three-body symmetry-adapted perturbation theory based on Kohn-Sham description of the monomers. , 2007, The Journal of chemical physics.

[48]  G. Scuseria,et al.  Comparative assessment of a new nonempirical density functional: Molecules and hydrogen-bonded complexes , 2003 .

[49]  Sarah L. Price,et al.  Energy minimization of crystal structures containing flexible molecules , 2006 .

[50]  Jirí Cerný,et al.  Benchmark database of accurate (MP2 and CCSD(T) complete basis set limit) interaction energies of small model complexes, DNA base pairs, and amino acid pairs. , 2006, Physical chemistry chemical physics : PCCP.

[51]  Petros Koumoutsakos,et al.  Dispersion corrections to density functionals for water aromatic interactions. , 2004, The Journal of chemical physics.

[52]  F. London,et al.  Wechselwirkung neutraler Atome und homöopolare Bindung nach der Quantenmechanik , 1927 .

[53]  J. Perdew,et al.  Test of a nonempirical density functional: short-range part of the van der Waals interaction in rare-gas dimers. , 2005, The Journal of chemical physics.

[54]  Saroj K. Nayak,et al.  Towards extending the applicability of density functional theory to weakly bound systems , 2001 .

[55]  Matthias Krack,et al.  Pseudopotentials for H to Kr optimized for gradient-corrected exchange-correlation functionals , 2005 .

[56]  S. Grimme,et al.  Density functional theory with dispersion corrections for supramolecular structures, aggregates, and complexes of (bio)organic molecules. , 2007, Organic & biomolecular chemistry.

[57]  J. F. Ogilvie,et al.  Potential-energy functions of diatomic molecules of the noble gases I. Like nuclear species , 1992 .

[58]  A. Tkatchenko,et al.  Adsorption of Ar on graphite using London dispersion forces corrected Kohn-Sham density functional theory , 2006 .

[59]  Edward Teller,et al.  Interaction of the van der Waals Type Between Three Atoms , 1943 .

[60]  José M. Pérez-Jordá,et al.  A density-functional study of van der Waals forces: rare gas diatomics. , 1995 .