A data set for evaluating the performance of multi-class multi-object video tracking
暂无分享,去创建一个
Avishek Chakraborty | David A. Kearney | Grant B. Wigley | Victor Stamatescu | Sebastien C. Wong | D. Kearney | V. Stamatescu | G. Wigley | Avishek Chakraborty | S. Wong
[1] J. Munkres. ALGORITHMS FOR THE ASSIGNMENT AND TRANSIORTATION tROBLEMS* , 1957 .
[2] Deepak Khosla,et al. Performance Evaluation of Neuromorphic-Vision Object Recognition Algorithms , 2014, 2014 22nd International Conference on Pattern Recognition.
[3] Mark D. McDonnell,et al. Learned filters for object detection in multi-object visual tracking , 2016, SPIE Defense + Security.
[4] Simone Calderara,et al. Visual Tracking: An Experimental Survey , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.
[5] Michael S. Bernstein,et al. ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.
[6] Michael S. Lew,et al. Deep learning for visual understanding: A review , 2016, Neurocomputing.
[7] Rainer Stiefelhagen,et al. Evaluating Multiple Object Tracking Performance: The CLEAR MOT Metrics , 2008, EURASIP J. Image Video Process..
[8] Enkhbayar Erdenee,et al. Multi-class Multi-object Tracking Using Changing Point Detection , 2016, ECCV Workshops.
[9] Stefan Roth,et al. MOT16: A Benchmark for Multi-Object Tracking , 2016, ArXiv.
[10] Sebastien Wong,et al. Relating image, shape, position, and velocity in visual tracking , 2009, Defense + Commercial Sensing.
[11] Stefan Roth,et al. MOTChallenge 2015: Towards a Benchmark for Multi-Target Tracking , 2015, ArXiv.
[12] Ming-Hsuan Yang,et al. DETRAC: A New Benchmark and Protocol for Multi-Object Tracking , 2015, ArXiv.