Capacitance limits of high surface area activated carbons for double layer capacitors

Abstract A large specific surface area (SSA) of carbon materials used for electrochemical double layer capacitors (EDLC) is the most important parameter leading to a large gravimetric capacitance ( C g ). However, for a SSA determined with the differential functional theory (DFT) model above a value of 1200 m 2 /g the plot of C g versus S DFT exhibits a plateau. We suggest that this limitation of C g can be ascribed to a space constriction for charge accommodation inside the pore walls. As a consequence, the use of extremely high surface area carbons for EDLCs may be unprofitable.

[1]  D. Aurbach,et al.  Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions , 2001 .

[2]  K. Kaneko,et al.  Internal Surface Area Evaluation of Carbon Nanotube with GCMC Simulation-Assisted N2 Adsorption , 2002 .

[3]  J. Fricke,et al.  Electrochemical Investigation of Carbon Aerogels and their Activated Derivatives , 2000 .

[4]  Hang Shi,et al.  Activated carbons and double layer capacitance , 1996 .

[5]  H. Gerischer,et al.  Density of the electronic states of graphite: derivation from differential capacitance measurements , 1987 .

[6]  Doron Aurbach,et al.  Carbon Electrodes for Double‐Layer Capacitors I. Relations Between Ion and Pore Dimensions , 2000 .

[7]  J. Fricke,et al.  High surface area carbon aerogels for supercapacitors , 1998 .

[8]  K. Kaneko,et al.  Superhigh surface area determination of microporous solids , 1992 .

[9]  H. Gerischer,et al.  An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level , 1985 .

[10]  S. J. Gregg,et al.  Adsorption Surface Area and Porosity , 1967 .

[11]  J. P. Olivier,et al.  Surface Area, Pore Volume Distribution, and Acidity in Mesoporous Expanded Clay Catalysts from Hybrid Density Functional Theory (DFT) and Adsorption Microcalorimetry Methods , 2002 .

[12]  J. Tascón,et al.  Characterization of synthetic carbons activated with phosphoric acid , 2002 .

[13]  R. Gallay,et al.  Interfacial Capacitance and Electronic Conductance of Activated Carbon Double-Layer Electrodes , 2004 .

[14]  M. S. Dresselhaus,et al.  Capacitance and Pore-Size Distribution in Aqueous and Nonaqueous Electrolytes Using Various Activated Carbon Electrodes , 2001 .

[15]  J. A. Ritter,et al.  Correlation of Double‐Layer Capacitance with the Pore Structure of Sol‐Gel Derived Carbon Xerogels , 1999 .