Optimized Sub‐Sampling of Point Sets for Surface Splatting

Using surface splats as a rendering primitive has gained increasing attention recently due to its potential for high‐performance and high‐quality rendering of complex geometric models. However, as with any other rendering primitive, the processing costs are still proportional to the number of primitives that we use to represent a given object. This is why complexity reduction for point‐sampled geometry is as important as it is, e.g., for triangle meshes. In this paper we present a new sub‐sampling technique for dense point clouds which is specifically adjusted to the particular geometric properties of circular or elliptical surface splats. A global optimization scheme computes an approximately minimal set of splats that covers the entire surface while staying below a globally prescribed maximum error toleranceε. Since our algorithm converts pure point sample data into surface splats with normal vectors and spatial extent, it can also be considered as a surface reconstruction technique which generates a hole‐free piecewise linearC−1continuous approximation of the input data. Here we can exploit the higher flexibility of surface splats compared to triangle meshes. Compared to previous work in this area we are able to obtain significantly lower splat numbers for a given error tolerance.

[1]  Greg Turk,et al.  Generating textures on arbitrary surfaces using reaction-diffusion , 1991, SIGGRAPH.

[2]  Marc Stamminger,et al.  Sequential point trees , 2003, ACM Trans. Graph..

[3]  Tony DeRose,et al.  Surface reconstruction from unorganized points , 1992, SIGGRAPH.

[4]  Marshall W. Bern,et al.  A new Voronoi-based surface reconstruction algorithm , 1998, SIGGRAPH.

[5]  Matthias Zwicker,et al.  Pointshop 3D: an interactive system for point-based surface editing , 2002, SIGGRAPH.

[6]  Leif Kobbelt,et al.  Simplification and Compression of 3D Meshes , 2002, Tutorials on Multiresolution in Geometric Modelling.

[7]  Matthias Zwicker,et al.  Surface splatting , 2001, SIGGRAPH.

[8]  Renato Pajarola,et al.  Efficient Level-of-details for Point based Rendering , 2003, Computer Graphics and Imaging.

[9]  Amitabh Varshney,et al.  Modeling and Rendering of Points with Local Geometry , 2003, IEEE Trans. Vis. Comput. Graph..

[10]  H. Deutsch Principle Component Analysis , 2004 .

[11]  N. Dodgson,et al.  A new point cloud simplification algorithm , 2003 .

[12]  Friedhelm Meyer auf der Heide,et al.  The randomized z-buffer algorithm: interactive rendering of highly complex scenes , 2001, SIGGRAPH.

[13]  Dorit S. Hochba,et al.  Approximation Algorithms for NP-Hard Problems , 1997, SIGA.

[14]  Marc Alexa,et al.  Computing and Rendering Point Set Surfaces , 2003, IEEE Trans. Vis. Comput. Graph..

[15]  Hanan Samet,et al.  The Design and Analysis of Spatial Data Structures , 1989 .

[16]  Marc Levoy,et al.  The Use of Points as a Display Primitive , 2000 .

[17]  D. Zhang,et al.  Principle Component Analysis , 2004 .

[18]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[19]  George Drettakis,et al.  Interactive Sampling and Rendering for Complex and Procedural Geometry , 2001, Rendering Techniques.

[20]  Frédo Durand,et al.  Billboard clouds for extreme model simplification , 2003, ACM Trans. Graph..

[21]  Leif Kobbelt,et al.  High-quality point-based rendering on modern GPUs , 2003, 11th Pacific Conference onComputer Graphics and Applications, 2003. Proceedings..

[22]  Marc Alexa,et al.  Point-based computer graphics , 2004, SIGGRAPH '04.

[23]  Leif Kobbelt,et al.  Phong Splatting , 2004, PBG.

[24]  Marc Levoy,et al.  QSplat: a multiresolution point rendering system for large meshes , 2000, SIGGRAPH.

[25]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[26]  William J. Dally,et al.  Point Sample Rendering , 1998, Rendering Techniques.

[27]  Pierre Alliez,et al.  Isotropic Remeshing of Surfaces: A Local Parameterization Approach , 2003, IMR.

[28]  Leif Kobbelt,et al.  Efficient High Quality Rendering of Point Sampled Geometry , 2002, Rendering Techniques.

[29]  Matthias Zwicker,et al.  Surfels: surface elements as rendering primitives , 2000, SIGGRAPH.

[30]  Lars Linsen,et al.  Point cloud representation , 2001 .

[31]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[32]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[33]  In-Kwon Lee,et al.  Curve reconstruction from unorganized points , 2000, Comput. Aided Geom. Des..

[34]  Juraj Hromkovic,et al.  Algorithmics for Hard Problems , 2002, Texts in Theoretical Computer Science An EATCS Series.

[35]  David Cohen-Steiner,et al.  Restricted delaunay triangulations and normal cycle , 2003, SCG '03.

[36]  Matthias Zwicker,et al.  Perspective Accurate Splatting , 2004, Graphics Interface.

[37]  Wojciech Matusik,et al.  Acquisition and Rendering of Transparent and Refractive Objects , 2002, Rendering Techniques.

[38]  Amitabh Varshney,et al.  Statistical Point Geometry , 2003, Symposium on Geometry Processing.

[39]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[40]  Matthias Zwicker,et al.  Object Space EWA Surface Splatting: A Hardware Accelerated Approach to High Quality Point Rendering , 2002, Comput. Graph. Forum.