Spherical adjunctions of stable $\infty$-categories and the relative S-construction

We develop the theory of semi-orthogonal decompositions and spherical functors in the framework of stable 8-categories. Building on this, we study the relative Waldhausen S-construction S‚pF q of a spherical functor F and equip it with a natural paracyclic structure (“rotational symmetry”). This fulfills a part of the general program to provide a rigorous account of perverse schobers which are (thus far conjectural) categorifications of perverse sheaves. Namely, in terms of our previous identification of perverse sheaves on Riemann surfaces with Milnor sheaves, the relative S-construction with its paracyclic symmetry amounts to a categorification of the stalks of a Milnor sheaf at a singularity of the corresponding perverse sheaf. The action of the paracyclic rotation is a categorical analog of the monodromy on the vanishing cycles of a perverse sheaf. Having this local categorification in mind, we may view the S-construction of a spherical functor as defining a schober locally at a singularity. Each component SnpF q can be interpreted as a partially wrapped Fukaya category of the disk with coefficients in the schober and with n ` 1 stops at the boundary.

[1]  V. V. Shekhtman,et al.  The homotopy limit of homotopy algebras , 1986 .

[2]  Merlin Christ Spherical Monadic Adjunctions of Stable Infinity Categories , 2020, International mathematics research notices.

[3]  R. Anno,et al.  Bar Category of Modules and Homotopy Adjunction for Tensor Functors , 2016, International Mathematics Research Notices.

[4]  Emily Riehl,et al.  Homotopy coherent adjunctions and the formal theory of monads , 2013, 1310.8279.

[5]  M. Kapranov,et al.  ENHANCED TRIANGULATED CATEGORIES , 1991 .

[6]  A. Kuznetsov,et al.  Categorical resolutions of irrational singularities , 2012, 1212.6170.

[7]  Giovanni Faonte Simplicial nerve of an A-infinity category , 2013, 1312.2127.

[8]  Ed Segal,et al.  All autoequivalences are spherical twists , 2016, 1603.06717.

[9]  T. Wedhorn,et al.  Representable Functors , 2020, Springer Studium Mathematik - Master.

[10]  M. Kapranov,et al.  Higher Segal Spaces , 2012, Lecture Notes in Mathematics.

[11]  Dominic R. Verity,et al.  The 2-category theory of quasi-categories , 2013, 1306.5144.

[12]  Andrew Lesniewski,et al.  Noncommutative Geometry , 1997 .

[13]  L. Hesselholt,et al.  Higher Algebra , 1937, Nature.

[14]  M. Kapranov,et al.  Triangulated surfaces in triangulated categories , 2013, 1306.2545.

[15]  Mikhail Kapranov,et al.  REPRESENTABLE FUNCTORS, SERRE FUNCTORS, AND MUTATIONS , 1990 .

[16]  C. Auderset Adjonctions et monades au niveau des 2-catégories , 1974 .

[17]  M. Kapranov,et al.  Crossed simplicial groups and structured surfaces , 2014, 1403.5799.

[18]  John Lauchlin MacDonald,et al.  General 2-Dimensional Adjunctions, Universal Monads and Simplicial Structures , 2021 .

[19]  R. Milgram Algebraic and geometric topology , 1978 .

[20]  Ross Street,et al.  The free adjunction , 1986 .

[21]  Friedhelm Waldhausen,et al.  ALGEBRAIC K-THEORY OF SPACES I , 1978 .

[22]  J. Lurie Higher Topos Theory , 2006, math/0608040.

[23]  Denis-Charles Cisinski Higher Categories and Homotopical Algebra , 2019 .

[24]  A. Galligo,et al.  ${\mathcal {D}}$-modules et faisceaux pervers dont le support singulier est un croisement normal , 1985 .

[25]  A. Elmendorf A simple formula for cyclic duality , 1993 .

[26]  A. Bondal,et al.  Semiorthogonal decompositions for algebraic varieties. , 1995 .

[27]  B. Fantechi Fundamental Algebraic Geometry , 2005 .

[28]  A. Beilinson How to glue perverse sheaves , 1987 .

[29]  R. Anno,et al.  Spherical DG-functors , 2013, 1309.5035.

[30]  Tobias Dyckerhoff A categorified Dold-Kan correspondence , 2017, Selecta Mathematica.

[31]  B. Toën The homotopy theory of dg-categories and derived Morita theory , 2004, math/0408337.

[32]  Daniel Halpern-Leistner,et al.  Autoequivalences of derived categories via geometric invariant theory , 2013, 1303.5531.

[33]  A. Kuznetsov Calabi–Yau and fractional Calabi–Yau categories , 2015, Journal für die reine und angewandte Mathematik (Crelles Journal).

[34]  Dominic R. Verity,et al.  ∞-Categories for the Working Mathematician , 2018 .

[35]  Daniel Huybrechts,et al.  Fourier-Mukai transforms in algebraic geometry , 2006 .

[36]  R. Anno,et al.  On adjunctions for Fourier-Mukai transforms , 2010, 1004.3052.

[37]  John L. MacDonald,et al.  Soft adjunction between 2-categories , 1989 .

[38]  Dominic R. Verity,et al.  Fibrations and Yoneda's lemma in an ∞-cosmos , 2017 .

[39]  Paul Seidel,et al.  Fukaya Categories and Picard-Lefschetz Theory , 2008 .