Thermodynamic evaluation and optimization of the As–Co, As–Fe and As–Fe–S systems

[1]  P. Chartrand,et al.  Thermodynamic Evaluation and Optimization of the Ag-As-S system , 2023, Journal of Phase Equilibria and Diffusion.

[2]  Nna,et al.  Calorimetric study of skutterudite (CoAs2.92) and heazlewoodite (Ni3S2) , 2022, American Mineralogist.

[3]  Solagbade Saheed Afolabi,et al.  A survey on cobalt metallurgical processes and its application , 2021, Journal of the Indian Chemical Society.

[4]  S. Shafaei,et al.  Bioleaching of cobalt from magnetite-rich cobaltite-bearing ore , 2021 .

[5]  A. Stepanov,et al.  Phase relations of arsenian pyrite and arsenopyrite , 2021 .

[6]  E. Jak,et al.  Thermodynamic optimization of the As–S system , 2021 .

[7]  J. Hartley,et al.  Investigating the dissolution of iron sulfide and arsenide minerals in deep eutectic solvents , 2020 .

[8]  N. Casati,et al.  Thermal Behavior of Iron Arsenides Under Non-Oxidizing Conditions , 2020, ACS omega.

[9]  A. Stepanov Arsenic evolution as a tool for understanding formation of pyritic gold ores: COMMENT , 2019 .

[10]  J. Brugger,et al.  Arsenic evolution as a tool for understanding formation of pyritic gold ores , 2019, Geology.

[11]  N. Evans,et al.  Sulfur isotopes, trace element, and textural analyses of pyrite, arsenopyrite and base metal sulfides associated with gold mineralization in the Pataz-Parcoy district, Peru: implication for paragenesis, fluid source, and gold deposition mechanisms , 2019, Mineralium Deposita.

[12]  Le Pape Pierre,et al.  Local environment of arsenic in sulfide minerals: insights from high-resolution X-ray spectroscopies, and first-principles calculations at the As K-edge , 2018 .

[13]  S. Gleeson,et al.  Partitioning of arsenic between hydrothermal fluid and pyrite during experimental siderite replacement , 2018, Chemical Geology.

[14]  A. Naggar,et al.  Deep catalytic desulphurization of heavy gas oil at mild operating conditions using self-functionalized nanoparticles as a novel catalyst , 2017 .

[15]  L. Pettersson,et al.  Stability, Structure, and Electronic Properties of the Pyrite/Arsenopyrite Solid–Solid Interface–A DFT Study , 2017 .

[16]  A. Mclean,et al.  Thermodynamic assessment of arsenic in iron and nickel alloys , 2017 .

[17]  G. Landrot,et al.  Arsenic Incorporation in Pyrite at Ambient Temperature at Both Tetrahedral S-I and Octahedral FeII Sites: Evidence from EXAFS-DFT Analysis. , 2017, Environmental science & technology.

[18]  Gunnar Eriksson,et al.  Reprint of: FactSage thermochemical software and databases, 2010–2016 , 2016 .

[19]  F. Walsh,et al.  A Review of the Iron–Air Secondary Battery for Energy Storage , 2015 .

[20]  L. Pavlova,et al.  Aresenopyrite-pyrite paragenesis in gold deposits (thermodynamic modeling) , 2014 .

[21]  Gavin M. Mudd,et al.  Quantifying the recoverable resources of by-product metals: The case of cobalt , 2013 .

[22]  D. Vaughan,et al.  Arsenopyrite oxidation - A review , 2009 .

[23]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases - recent developments , 2009 .

[24]  Yu. V. Shvarov,et al.  HCh: New potentialities for the thermodynamic simulation of geochemical systems offered by windows , 2008 .

[25]  R. Ewing,et al.  A proposed new type of arsenian pyrite: Composition, nanostructure and geological significance , 2008 .

[26]  M. Ohno,et al.  Thermodynamic modeling of the system As–Fe combined with first-principles total energy calculations , 2008 .

[27]  V. Majer,et al.  Densities and heat capacities of aqueous arsenious and arsenic acid solutions to 350 °C and 300 bar, and revised thermodynamic properties of As(OH)3∘(aq), AsO(OH)3∘(aq) and iron sulfarsenide minerals , 2008 .

[28]  R. Ayuso,et al.  Mineral sources and transport pathways for arsenic release in a coastal watershed, USA , 2008, Geochemistry: Exploration, Environment, Analysis.

[29]  M. Alfredsson,et al.  Arsenic incorporation into FeS2 pyrite and its influence on dissolution: A DFT study , 2007 .

[30]  M. Reich,et al.  First-principles calculations of the thermodynamic mixing properties of arsenic incorporation into pyrite and marcasite , 2006 .

[31]  R. Ewing,et al.  Solubility of gold in arsenian pyrite , 2005 .

[32]  A. Pelton,et al.  Thermodynamic modeling of the Fe-S system , 2005 .

[33]  E. Makovicky,et al.  THE SYSTEM Fe–Co–Ni–As–S. I. PHASE RELATIONS IN THE (Fe,Co,Ni)As0.5S1.5 SECTION AT 650° AND 500°C , 2004 .

[34]  V. Ettler,et al.  Mineralogy of metallic phases in sulphide mattes from primary lead smelting , 2003 .

[35]  Gunnar Eriksson,et al.  FactSage thermochemical software and databases , 2002 .

[36]  A. Pelton A general “geometric” thermodynamic model for multicomponent solutions , 2001 .

[37]  E. Makovicky,et al.  COMPOSITIONAL TRENDS IN Fe, Co AND Ni SULFARSENIDES AND THEIR CRYSTAL-CHEMICAL IMPLICATIONS: RESULTS FROM THE ARROYO DE LA CUEVA DEPOSITS, RONDA PERIDOTITE, SOUTHERN SPAIN , 2001 .

[38]  Patrice Chartrand,et al.  The modified quasi-chemical model: Part II. Multicomponent solutions , 2001 .

[39]  G. Waychunas,et al.  Arsenic speciation in pyrite and secondary weathering phases, Mother Lode gold district, Tuolumne County, California , 2000 .

[40]  Gunnar Eriksson,et al.  The modified quasichemical model I—Binary solutions , 2000 .

[41]  V. Tauson GOLD SOLUBILITY IN THE COMMON GOLD-BEARING MINERALS : EXPERIMENTAL EVALUATION AND APPLICATION TO PYRITE , 1999 .

[42]  J. Penner‐Hahn,et al.  Oxidation state of gold and arsenic in gold-bearing arsenian pyrite , 1999 .

[43]  S. Kesler,et al.  Geochemistry and textures of gold-bearing arsenian pyrite, Twin Creeks, Nevada; implications for deposition of gold in carlin-type deposits , 1999 .

[44]  G. Rossman,et al.  Single-crystal IR spectroscopy of very strong hydrogen bonds in pectolite, NaCa2[Si3O8(OH)], and serandite, NaMn2[Si3O8(OH)] , 1998 .

[45]  A. Pelton,et al.  Thermodynamic optimization of the selenium-arsenic (Se-As) system , 1997 .

[46]  T. Brewer,et al.  Chemistry and distribution of accessory Ni, Co, Fe arsenic minerals in the Pechenga Ni-Cu deposits, Kola Peninsula, Russia , 1997 .

[47]  M. Fleet,et al.  Gold-bearing arsenian pyrite and marcasite and arsenopyrite from Carlin Trend gold deposits and laboratory synthesis , 1997 .

[48]  I. Ansara,et al.  Thermodynamic assessment of the AlNi system , 1997 .

[49]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[50]  H. Nesbitt,et al.  Oxidation of arsenopyrite by air and air-saturated, distilled water, and implications for mechanism of oxidation , 1995 .

[51]  Toshihiro Tanaka,et al.  Excess thermodynamic properties of dilute solutions , 1995 .

[52]  O. J. Kleppa,et al.  Standard enthalpy of formation of Cu3As and heats of mixing in the liquid systems CuAs and FeAs by direct combination high temperature drop calorimetry , 1995 .

[53]  Blöchl,et al.  Projector augmented-wave method. , 1994, Physical review. B, Condensed matter.

[54]  P. Möller,et al.  Electrochemical accumulation of visible gold on pyrite and arsenopyrite surfaces , 1994 .

[55]  F. Tsukihashi,et al.  Activity coefficient of antimony and arsenic in molten iron and carbon saturated iron , 1994 .

[56]  C. Weisener,et al.  Arsenian pyrite from gold deposits; Au and As distribution investigated by SIMS and EMP, and color staining and surface oxidation by XPS and LIMS , 1993 .

[57]  M. Schoonen,et al.  Mechanisms of pyrite and marcasite formation from solution: III. Hydrothermal processes , 1991 .

[58]  A. Dinsdale SGTE data for pure elements , 1991 .

[59]  A. S. Pashinkin,et al.  Heat capacity and thermodynamic functions of iron diarsenide in the temperature range 5 K to 300 K , 1991 .

[60]  勉功 山口,et al.  金属ヒ化物およびアンチモン化物 (MxASy, MxSby (M=Cu, Fe, Co, Ni)) の熱測 , 1991 .

[61]  M. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: I. Nucleation of FeS2 below 100°C , 1991 .

[62]  Martin A. A. Schoonen,et al.  Reactions forming pyrite and marcasite from solution: II. Via FeS precursors below 100°C , 1991 .

[63]  R. Schmid-Fetzer,et al.  Interaction of metals with AlAs and InAs: Estimation of ternary Al-As-M and In-As-M phase diagrams , 1989 .

[64]  F. Grønvold,et al.  FeAs: heat capacity, enthalpy increments, other thermodynamic properties from 5 to 1350 K, and magnetic transition , 1989 .

[65]  N. Gokcen The As (Arsenic) system , 1989 .

[66]  T. Siegrist,et al.  High-temperature behavior of CoAs2 and CoSb2 , 1986 .

[67]  M. El-Boragy,et al.  Zur Struktur und Stabilität des Arsenids Co5As2 , 1986 .

[68]  S. Benson,et al.  Correlations of heats of formation of the different valency states of solid, polyvalent binary metal compounds , 1985 .

[69]  N. Chakraborti,et al.  Thermodynamics of roasting arsenopyrite , 1983 .

[70]  D. D. Wagman,et al.  The NBS tables of chemical thermodynamic properties : selected values for inorganic and C1 and C2 organic substances in SI units , 1982 .

[71]  J. Tossell,et al.  Pyrite, marcasite, and arsenopyrite type minerals: Crystal chemical and structural principles , 1981 .

[72]  R. Lučić,et al.  Mertensitic transformation in iron-arsenic alloys , 1977 .

[73]  S. Scott,et al.  Phase relations involving arsenopyrite in the system Fe-As-S and their application , 1976 .

[74]  C. Swahn,et al.  ON PHASE TRANSITIONS BETWEEN THE MNP AND NIAS TYPE STRUCTURES , 1974 .

[75]  N. Mandel,et al.  The refinement of the crystal structure of skutterudite, CoAs3 , 1971 .

[76]  A. Roger,et al.  Structural transitions between phosphides, arsenides and arsenophoshides of the composition M2 P, M2 As and M2(P 1?xAsx) , 1971 .

[77]  B. Predel,et al.  Das Ausscheidungsverhalten von α-Mischkristallen des Eisens mit Arsen und Antimon , 1971 .

[78]  P. Barton Thermochemical study of the system Fe-As-S , 1969 .

[79]  P. Toulmin,et al.  A thermodynamic study of pyrite and pyrrhotite , 1964 .

[80]  R. D. Heyding,et al.  TRANSITION METAL ARSENIDES: V. A NOTE ON THE RHODIUM/ARSENIC SYSTEM AND THE MONOCLINIC DIARSENIDES OF THE COBALT FAMILY , 1962 .

[81]  L. A. Clark The Fe-As-S system--Phase relations and applications , 1960 .

[82]  L. D. Calvert,et al.  ARSENIDES OF THE TRANSITION METALS: III. A NOTE ON THE HIGHER ARSENIDES OF IRON, COBALT, AND NICKEL , 1960 .

[83]  H. E. Mckinstry Mineral assemblages in sulfide ores; the system Cu-Fe-As-S , 1959 .

[84]  L. D. Calvert,et al.  ARSENIDES OF TRANSITION METALS: THE ARSENIDES OF IRON AND COBALT , 1957 .

[85]  W. Köster,et al.  Die Systeme des Kobalts mit Bor, Arsen, Zirkon, Niob und Tantal , 1938 .

[86]  F. Wever,et al.  Ueber den Einfluß der Elemente auf den Polymorphismus des Eisens , 1929 .

[87]  A. R. Butcher,et al.  Geometallurgy of cobalt ores: A review , 2021 .

[88]  W. Skinner,et al.  Formation of As(II)-pyrite during experimental replacement of magnetite under hydrothermal conditions , 2013 .

[89]  B. Hyde,et al.  Marcasite and Pyrite (FeS2) , 1996 .

[90]  B. Sundman,et al.  Thermodynamic assessment of the Cu-As system using an ionic two-sublattice model for the liquid phase , 1994 .

[91]  J. Ågren,et al.  A regular solution model for phases with several components and sublattices, suitable for computer applications , 1981 .

[92]  G. Inden The role of magnetism in the calculation of phase diagrams , 1981 .

[93]  M. Hillert,et al.  A model for alloying in ferromagnetic metals , 1978 .

[94]  P. Hagenmuller,et al.  High Temperature Studies of Marcasite and Arsenopyrite Type Compounds. , 1977 .

[95]  F. R. de Boer,et al.  Model predictions for the enthalpy of formation of transition metal alloys II , 1977 .

[96]  A. Kjekshus,et al.  On the Phases Cr2As, Fe2As, Co2As, and Rh2As. , 1972 .

[97]  M. Wintenberger,et al.  Structure cristalline de CoAs2 , 1966 .

[98]  M. Wintenberger Étude électrique et magnétique de composés sulfurés et arséniés d'éléments de transition. III. Propriétés électriques et magnétiques et liaisons dans l'arsénopyrite, la cobaltite et la loellingite , 1962 .

[99]  U. Haschimoto Relation between the Allotropic Transformation of Cobalt and Some Additional Elements , 1937 .

[100]  M. Buerger The Crystal Structure of Löllingite, FeAs2 , 1932 .