Magnetic order induced polarization anomaly of Raman scattering in 2D magnet CrI3.

The recent discovery of 2D magnets has revealed various intriguing phenomena due to the coupling between spin and other degree of freedoms (such as helical photoluminescence, nonreciprocal SHG). Previous research on the spin-phonon coupling effect mainly focuses on the renormalization of phonon frequency. Here we demonstrate that the Raman polarization selection rules of optical phonons can be greatly modified by the magnetic ordering in 2D magnet CrI3. For monolayer samples, the dominant A1g peak shows abnormally high intensity in the cross polarization channel at low temperature, which is forbidden by the selection rule based on the lattice symmetry. While for bilayer, this peak is absent in the cross polarization channel for the layered antiferromagnetic (AFM) state and reappears when it is tuned to the ferromagnetic (FM) state by an external magnetic field. Our findings shed light on exploring the emergent magneto-optical effects in 2D magnets.

[1]  Xiaodong Xu,et al.  Tuning Inelastic Light Scattering via Symmetry Control in 2D Magnet CrI 3 , 2020 .

[2]  Xiaodong Xu,et al.  Tuning inelastic light scattering via symmetry control in the two-dimensional magnet CrI3 , 2019, Nature Nanotechnology.

[3]  C. N. Lau,et al.  Distinct magneto-Raman signatures of spin-flip phase transitions in CrI3 , 2019, Nature Communications.

[4]  A. Morpurgo,et al.  Low-temperature monoclinic layer stacking in atomically thin CrI3 crystals , 2019, 2D Materials.

[5]  L. Bi,et al.  Layer Dependence of Interlayer Breathing and Shear Modes in Ising Ferromagnetic CrI3 , 2019 .

[6]  L. Bi,et al.  Layer dependence of stacking order in nonencapsulated few-layer CrI3 , 2019, Science China Materials.

[7]  Cheol-Hwan Park,et al.  Antiferromagnetic ordering in van der Waals 2D magnetic material MnPS3 probed by Raman spectroscopy , 2019, 2D Materials.

[8]  Joshua E. Goldberger,et al.  Pressure-controlled interlayer magnetism in atomically thin CrI3 , 2019, Nature Materials.

[9]  Michael A. McGuire,et al.  Switching 2D magnetic states via pressure tuning of layer stacking , 2019, Nature Materials.

[10]  Jun Zhang,et al.  Probing the Magnetic Ordering of Antiferromagnetic MnPS3 by Raman Spectroscopy. , 2019, The journal of physical chemistry letters.

[11]  K. Novoselov,et al.  Magnetic 2D materials and heterostructures , 2019, Nature Nanotechnology.

[12]  Xiaodong Xu,et al.  Giant nonreciprocal second-harmonic generation from antiferromagnetic bilayer CrI3 , 2019, Nature.

[13]  Jie Shan,et al.  Spin tunnel field-effect transistors based on two-dimensional van der Waals heterostructures , 2019, Nature Electronics.

[14]  Kai Sun,et al.  Evolution of interlayer and intralayer magnetism in three atomically thin chromium trihalides , 2019, Proceedings of the National Academy of Sciences.

[15]  Xiang Zhang,et al.  Two-dimensional magnetic crystals and emergent heterostructure devices , 2019, Science.

[16]  Cheol-Hwan Park,et al.  Suppression of magnetic ordering in XXZ-type antiferromagnetic monolayer NiPS3 , 2019, Nature Communications.

[17]  D. Mandrus,et al.  Magnetism in two-dimensional van der Waals materials , 2018, Nature.

[18]  Satoshi Okamoto,et al.  Stacking-Dependent Magnetism in Bilayer CrI3. , 2018, Nano letters.

[19]  Hyun Ho Kim,et al.  Raman fingerprint of two terahertz spin wave branches in a two-dimensional honeycomb Ising ferromagnet , 2018, Nature Communications.

[20]  Mingyuan Huang,et al.  Raman spectroscopy evidence for dimerization and Mott collapse in α−RuCl3 under pressures , 2018, Physical Review Materials.

[21]  Takashi Taniguchi,et al.  Voltage Control of a van der Waals Spin-Filter Magnetic Tunnel Junction. , 2018, Nano letters.

[22]  Zhe Yuan,et al.  Stacking tunable interlayer magnetism in bilayer CrI3 , 2018, Physical Review B.

[23]  Jia-An Yan,et al.  Distinct spin-lattice and spin-phonon interactions in monolayer magnetic CrI3. , 2018, Physical chemistry chemical physics : PCCP.

[24]  E. Kaxiras,et al.  Raman spectrum of CrI3 : An abinitio study , 2018, Physical Review B.

[25]  Jie Shan,et al.  Electric-field switching of two-dimensional van der Waals magnets , 2018, Nature Materials.

[26]  Wang Yao,et al.  Two-dimensional itinerant ferromagnetism in atomically thin Fe3GeTe2 , 2018, Nature Materials.

[27]  Yuanbo Zhang,et al.  Gate-tunable room-temperature ferromagnetism in two-dimensional Fe3GeTe2 , 2018, Nature.

[28]  Jie Shan,et al.  Controlling magnetism in 2D CrI3 by electrostatic doping , 2018, Nature Nanotechnology.

[29]  Michael A. McGuire,et al.  Electrical control of 2D magnetism in bilayer CrI3 , 2018, Nature Nanotechnology.

[30]  Raja Das,et al.  Strong room-temperature ferromagnetism in VSe2 monolayers on van der Waals substrates , 2018, Nature Nanotechnology.

[31]  Xiaodong Xu,et al.  Giant tunneling magnetoresistance in spin-filter van der Waals heterostructures , 2018, Science.

[32]  T. Taniguchi,et al.  Probing magnetism in 2D van der Waals crystalline insulators via electron tunneling , 2018, Science.

[33]  Takashi Taniguchi,et al.  Very large tunneling magnetoresistance in layered magnetic semiconductor CrI3 , 2018, Nature Communications.

[34]  Michael A. McGuire,et al.  Ligand-field helical luminescence in a 2D ferromagnetic insulator , 2017, 1710.05550.

[35]  Michael A. McGuire,et al.  Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit , 2017, Nature.

[36]  S. Louie,et al.  Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals , 2017, Nature.

[37]  Jun Zhang,et al.  Raman spectroscopy of atomically thin two-dimensional magnetic iron phosphorus trisulfide (FePS3) crystals , 2016 .

[38]  J. Ryoo,et al.  Ising-Type Magnetic Ordering in Atomically Thin FePS3. , 2016, Nano letters.

[39]  Huiwen Ji,et al.  Magneto-elastic coupling in a potential ferromagnetic 2D atomic crystal , 2016, 1604.08745.

[40]  L. Dai,et al.  Physical origin of Davydov splitting and resonant Raman spectroscopy of Davydov components in multilayer MoTe 2 , 2016, 1602.05692.

[41]  R. Moessner,et al.  Fermionic response from fractionalization in an insulating two-dimensional magnet , 2016, Nature Physics.

[42]  Young-June Kim,et al.  Scattering continuum and possible fractionalized excitations in α-RuCl(3). , 2015, Physical review letters.

[43]  Brian C. Sales,et al.  Coupling of Crystal Structure and Magnetism in the Layered, Ferromagnetic Insulator CrI3 , 2015 .

[44]  Jun Zhang,et al.  Anomalous frequency trends in MoS 2 thin films attributed to surface effects , 2013, 1308.6393.

[45]  Klein,et al.  Resonant two-magnon Raman scattering in cuprate antiferromagnetic insulators. , 1995, Physical review. B, Condensed matter.

[46]  D. J. Lockwood,et al.  The spin‐phonon interaction in FeF2 and MnF2 studied by Raman spectroscopy , 1988 .

[47]  D. J. Lockwood,et al.  Raman scattering from one-magnon excitations in FeF2 , 1984 .

[48]  G. Benedek,et al.  Zone-Boundary-Phonon Raman Scattering in VI 2 due to Modulation of Exchange Interaction , 1979 .

[49]  E. Burstein,et al.  Morphic effects. V. Time reversal symmetry and the mode properties of long wavelength optical phonons , 1972 .

[50]  A. Cracknell Scattering matrices for the Raman effect in magnetic crystals , 1969 .

[51]  R. Merlin,et al.  Spin-Disorder-Induced Raman Scattering in Europium Chalcogenides , 1977 .