Homogeneously catalysed conversion of aqueous formaldehyde to H2 and carbonate

[1]  Xinzheng Yang,et al.  Theoretical study of the mechanism of ruthenium catalyzed dehydrogenation of methanol-water mixture to H2 and CO2 , 2016 .

[2]  M. Prechtl,et al.  Water decontamination with hydrogen production using microwave-formed minute-made ruthenium catalysts , 2016 .

[3]  Matthew N. Grayson,et al.  Theory and Modeling of Asymmetric Catalytic Reactions. , 2016, Accounts of chemical research.

[4]  G. Olah,et al.  Conversion of CO2 from Air into Methanol Using a Polyamine and a Homogeneous Ruthenium Catalyst. , 2016, Journal of the American Chemical Society.

[5]  J. Sutherland The Origin of Life--Out of the Blue. , 2016, Angewandte Chemie.

[6]  Lukas J. Goossen,et al.  Cover Picture: Sandmeyer‐Type Trifluoromethylthiolation and Trifluoromethylselenolation of (Hetero)Aromatic Amines Catalyzed by Copper (Chem. Eur. J. 1/2016) , 2016 .

[7]  B. de Bruin,et al.  Hydrogenation of carboxylic acids with a homogeneous cobalt catalyst , 2015, Science.

[8]  M. Hall,et al.  Role of the chemically non-innocent ligand in the catalytic formation of hydrogen and carbon dioxide from methanol and water with the metal as the spectator. , 2015, Journal of the American Chemical Society.

[9]  J. Deska,et al.  Bioinduced Room-Temperature Methanol Reforming. , 2015, Angewandte Chemie.

[10]  T. Aikawa,et al.  Hydrogen Production from a Methanol-Water Solution Catalyzed by an Anionic Iridium Complex Bearing a Functional Bipyridonate Ligand under Weakly Basic Conditions. , 2015, Angewandte Chemie.

[11]  E. Bielinski,et al.  Base-Free Methanol Dehydrogenation Using a Pincer-Supported Iron Compound and Lewis Acid Co-catalyst , 2015 .

[12]  H. Grützmacher,et al.  3. Cooperating Ligands in Catalysis , 2015 .

[13]  D. Singleton,et al.  A Case Study of the Mechanism of Alcohol-Mediated Morita Baylis–Hillman Reactions. The Importance of Experimental Observations , 2015, Journal of the American Chemical Society.

[14]  Ming Lei,et al.  The Nature of Hydrogen Production from Aqueous-Phase Methanol Dehydrogenation with Ruthenium Pincer Complexes Under Mild Conditions , 2015 .

[15]  R. Crabtree,et al.  Methanol dehydrogenation by iridium N-heterocyclic carbene complexes. , 2015, Inorganic chemistry.

[16]  Nomaan M Rezayee,et al.  Tandem amine and ruthenium-catalyzed hydrogenation of CO2 to methanol. , 2015, Journal of the American Chemical Society.

[17]  S. Fukuzumi,et al.  Catalytic hydrogen production from paraformaldehyde and water using an organoiridium complex. , 2015, Chemical communications.

[18]  M. Beller,et al.  Efficient and selective hydrogen generation from bioethanol using ruthenium pincer-type complexes. , 2014, ChemSusChem.

[19]  H. Grützmacher,et al.  Molecular catalysts for hydrogen production from alcohols , 2014 .

[20]  Y. Diskin‐Posner,et al.  Reusable Homogeneous Catalytic System for Hydrogen Production from Methanol and Water , 2014 .

[21]  N. Schlörer,et al.  Selective and mild hydrogen production using water and formaldehyde , 2014, Nature Communications.

[22]  R. Ludwig,et al.  Base-free hydrogen generation from methanol using a bi-catalytic system. , 2014, Chemical communications.

[23]  M. Beller,et al.  Selective hydrogen production from methanol with a defined iron pincer catalyst under mild conditions. , 2013, Angewandte Chemie.

[24]  R. Rodríguez‐Lugo,et al.  A homogeneous transition metal complex for clean hydrogen production from methanol-water mixtures. , 2013, Nature chemistry.

[25]  M. Beller,et al.  Low-temperature aqueous-phase methanol dehydrogenation to hydrogen and carbon dioxide , 2013, Nature.

[26]  E. Balaraman,et al.  Catalytic transformation of alcohols to carboxylic acid salts and H2 using water as the oxygen atom source , 2013, Nature Chemistry.

[27]  V. Praneeth,et al.  Redox-active ligands in catalysis. , 2012, Angewandte Chemie.

[28]  Wojciech I Dzik,et al.  'Carbene radicals' in Co(II)(por)-catalyzed olefin cyclopropanation. , 2010, Journal of the American Chemical Society.

[29]  Christian Limberg,et al.  The Mechanism of Water Oxidation: From Electrolysis via Homogeneous to Biological Catalysis , 2010 .

[30]  S. Grimme,et al.  A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. , 2010, The Journal of chemical physics.

[31]  Swati Rawat,et al.  Oxidation of methane by a biological dicopper center , 2010, Nature.

[32]  H. Grützmacher,et al.  Cooperating ligands in catalysis. , 2008, Angewandte Chemie.

[33]  Peter H. M. Budzelaar,et al.  Geometry optimization using generalized, chemically meaningful constraints , 2007, J. Comput. Chem..

[34]  Yvain Nicolet,et al.  Structure/function relationships of [NiFe]- and [FeFe]-hydrogenases. , 2007, Chemical reviews.

[35]  G. Wilkinson,et al.  Tetrakis(triphenylphosphine)dichlororuthenium(II) and Tris(triphenylphosphine)dichlororuthenium(II) , 2007 .

[36]  M. Wörle,et al.  Chiral phosphane alkenes (PALs): simple synthesis, applications in catalysis, and functional hemilability. , 2006, Chemistry.

[37]  A. Lyashchenko,et al.  The high-frequency dielectric spectroscopy of the aqueous solutions of tetrabutylammonium carboxylates , 2005 .

[38]  H. Grützmacher,et al.  Strain in organometallics II: controlling the properties of tetra-coordinated iridium complexes using diastereomers of a bis(tropp) ligand system , 2004 .

[39]  G. Frison,et al.  Tropad: a new ligand for the synthesis of water-stable paramagnetic [16+1]-electron rhodium and iridium complexes. , 2003, Chemistry.

[40]  A. Kruse,et al.  Acidity and basicity of metal oxide catalysts for formaldehyde reaction in supercritical water at 673 K , 2003 .

[41]  Marek Sierka,et al.  Fast evaluation of the Coulomb potential for electron densities using multipole accelerated resolution of identity approximation , 2003 .

[42]  Jonathan Woodward,et al.  Biotechnology: Enzymatic production of biohydrogen , 2000, Nature.

[43]  R. Bergman,et al.  Unusually Mild and Selective Hydrocarbon C-H Bond Activation with Positively Charged Iridium(III) Complexes , 1995, Science.

[44]  G. Maurer,et al.  1H- and 13C-NMR-Spectroscopic Study of Chemical Equilibria in Solutions of Formaldehyde in Water, Deuterium Oxide, and Methanol , 1994 .

[45]  R. Periana,et al.  A Mercury-Catalyzed, High-Yield System for the Oxidation of Methane to Methanol , 1993, Science.

[46]  Hans W. Horn,et al.  Fully optimized contracted Gaussian basis sets for atoms Li to Kr , 1992 .

[47]  G. Maurer,et al.  Kinetics of the poly(oxymethylene) glycol formation in aqueous formaldehyde solutions , 1991 .

[48]  A. Becke,et al.  Density-functional exchange-energy approximation with correct asymptotic behavior. , 1988, Physical review. A, General physics.

[49]  J. Perdew,et al.  Density-functional approximation for the correlation energy of the inhomogeneous electron gas. , 1986, Physical review. B, Condensed matter.

[50]  P. Houston,et al.  Formaldehyde photochemistry: Appearance rate, vibrational relaxation, and energy distribution of the CO product , 1976 .

[51]  H. Urey,et al.  Organic compound synthesis on the primitive earth. , 1959, Science.

[52]  Stanley L. Miller,et al.  Organic Compound Synthes on the Primitive Eart: Several questions about the origin of life have been answered, but much remains to be studied , 1959 .

[53]  E. Pfeil Über den Mechanismus der Cannizzaroschen Reaktion , 1951 .

[54]  J. Deska,et al.  Self-Sufficient Formaldehyde-to-Methanol Conversion by Organometallic Formaldehyde Dismutase Mimic , 2017 .

[55]  P. Pérez Alkane C-H Activation by Single-Site Metal Catalysis , 2012 .

[56]  J. Cregg,et al.  Heterologous protein expression in the methylotrophic yeast Pichia pastoris. , 2000, FEMS microbiology reviews.

[57]  Meyer Steinberg,et al.  Modern and prospective technologies for hydrogen production from fossil fuels , 1989 .

[58]  P. Maitlis,et al.  Homogeneously catalysed disproportionation of acetaldehyde into ethanol and acetic acid , 1980 .